

MCR 3U

FUNCTION NOTATION

Standard Notation

$$y = 2x + 1$$

Function Notation

$$f(x) = 2x + 1$$

Read as “*f of x equals*”

The function notation explicitly indicates that the “*y*” values are a function of the “*x*” values that are chosen for evaluation. In other words, $f(x)$ (or *y*) is the dependent variable and *x* is the independent variable.

NOTE: The symbol $f(x)$ does not mean “*f* times *x*”, rather it means to evaluate the given rule at the given value of *x*.

EXAMPLE: Given $f(x) = 2x + 1$, evaluate $f(-3)$.

We are required to evaluate the function when $x = -3$, thus determining the *y*-coordinate of the relation.

$$\begin{aligned}f(-3) &= 2(-3) + 1 \\&= -5\end{aligned}$$

EXERCISE 1: Given $f(x) = 1 - 4x - 2x^2$ and $g(x) = \frac{2x-1}{x+3}$, evaluate...

1. $f(-1)$

2. $f(3)$

3. $f(0)$

4. $f(2a)$

5. $f(a + 2)$

6. $g(-2)$

7. $g(11)$

8. $g(-3)$

9. $g(3a)$

10. $g(a - 2)$

11. $f(2) + g(2)$

12. $g(3) - g(-1)$

EXERCISE 2A: Given $k(x) = x^2 + 3x - 4$ and $h(x) = 2x + 8$, evaluate...

1. $k(-2) - h(-3)$

2. $\frac{h(4)-h(1)}{4-1}$

3. $\frac{h(-5)-h(-1)}{-5-(-1)}$

EXERCISE 2B: Using $k(x)$ and $h(x)$ in Exercise 2A, solve each equation.

4. $k(x) = 6$

5. $h(x) = 6$

6. $k(x) = h(x)$

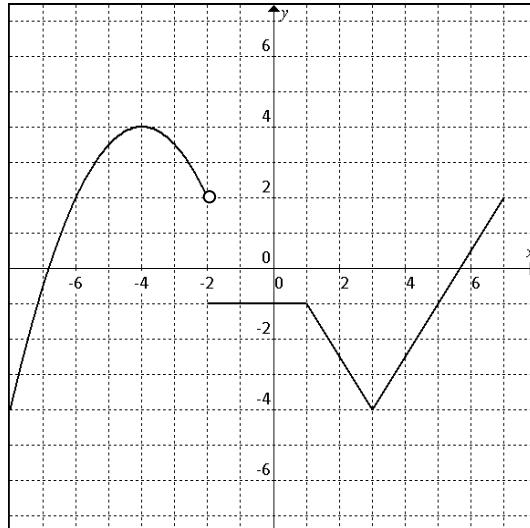
EXERCISE 3: Consider the graph to the right.

Evaluate/solve each of the following:

1. $f(-6)$

2. $f(1)$

3. $f(4)$


4. $f(-2)$

5. $f(8)$

6. $f(x) = 4$

7. $f(x) = 2$

8. $f(x) = 0$

ANSWERS:

EX 1: 1. 3; 2. -29; 3. 1; 4. $1 - 8a - 8a^2$; 5. $-2a^2 - 12a - 15$; 6. -5; 7. $3/2$; 8. undefined; 9. $(6a-1)/(3a+3)$; 10. $(2a-5)/(a+1)$; 11. -14.4; 12. $7/3$

EX.2A: 1. -8; 2. 2; 3. 2; **EX.2B:** 6. $x=-5, 2$; 7. $x=-1$; 8. $x=-4, 3$

EX.3: 1. 2; 2. -1; 3. -2.5; 4. -1; 5. No answer; 6. -4; 7. -6, 7; 8. -6.8, 5.7