

MPM 1D

3.3 PART A: SLOPE OF A LINE

One way of describing the slope of a line is _____

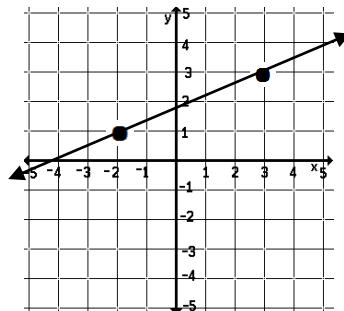
Order these lines from biggest to smallest slope...

The letter we use for slope is a lowercase _____!

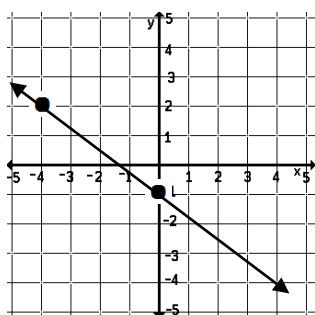
Why?! Because it comes from the French word *monter* which means to climb or to rise.

When given a graph of a line, we need to know a simple definition of slope:

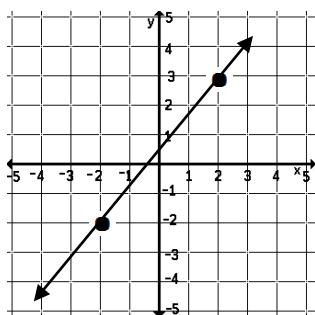
$m =$

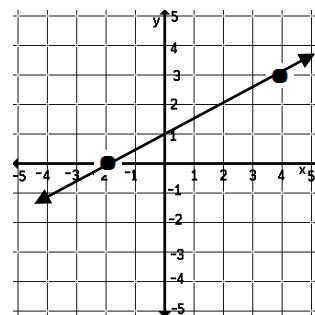

** Slope is the ratio of a line's _____ change to its _____ change.
It is often referred to as "***rise over run***"!

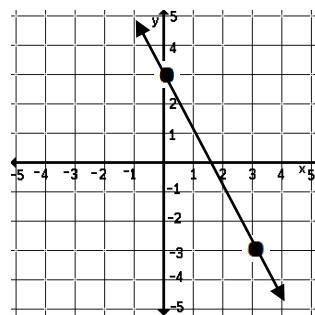
How to find the slope of a line when given a graph of a line:


1) Start at the point farthest to the _____!

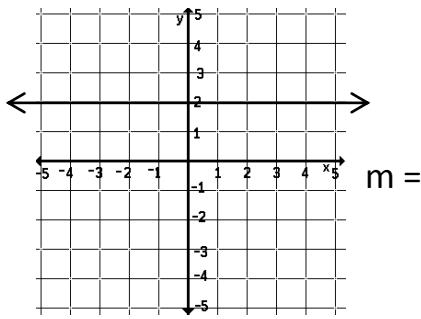
2) Find the *rise*!
Up: _____
Down: _____

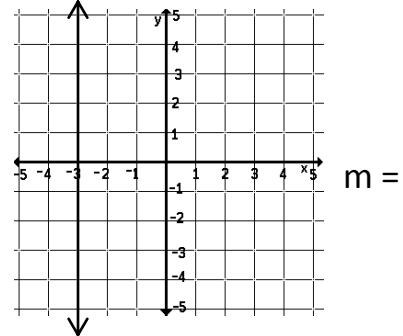

3) Find the *run*!
Right: _____
Left: _____


Find the slope of the following lines!


$$m =$$

$$m =$$


$$m =$$


$$m =$$

Horizontal and Vertical Lines...

Horizontal Line

Vertical Line

Sometimes we are not given a picture, but instead we are given 2 points on the line.

When this is the case, we use another definition of slope:

$m =$

In other words, slope is $\frac{\text{Change in } y}{\text{Change in } x}$

How to find the slope of a line when given two points on the line:

① Subtract one y –value from another y –value!
(It helps to draw arrows!)

② Subtract one x –value from another x –value!
(It helps to draw arrows!)

IMPORTANT:

* Subtracting a negative means _____!

②
①
(-1, 7) and (-4, 5)

$m =$ _____

Find the slope of the line that passes through each pair of points:

1. $(6, -1) \text{ & } (4, 2)$

2. $(4, 3) \text{ & } (3, -2)$

3. $(-1, 7) \text{ & } (-3, 1)$

4. $(3, 4) \text{ & } (6, 5)$