

MPM 2D

GRAPHING QUADRATICS IN VERTEX FORM $y = a(x - h)^2 + v$

① DESCRIBING THE TRANSFORMATION OF $y = x^2$

$$y = a(x - h)^2 + v$$

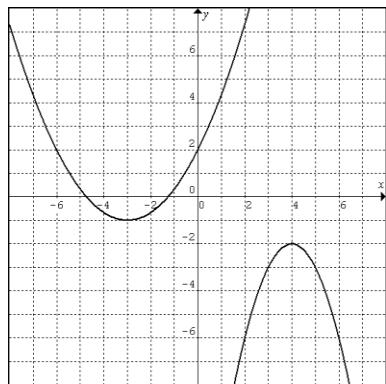
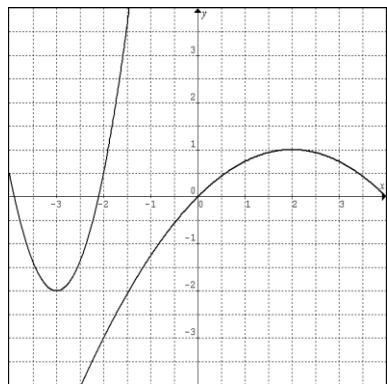
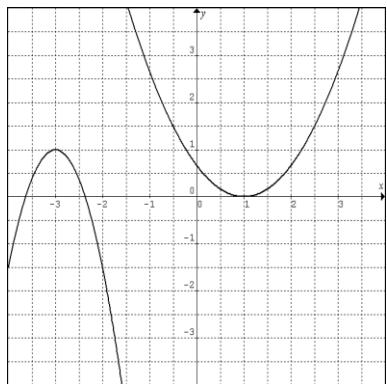
Where a = Vertical expansion/compression
Vertical Reflection

h = horizontal shift left or right
 v = vertical shift up or down

EXAMPLES: Describe the transformations that would be applied to $y = x^2$ to create the graph of each relation. List in the appropriate order.

1. $y = (x - 3)^2 - 4$

2. $y = -(x + 2)^2 + 2$




3. $y = \frac{5}{2}x^2 - 5$

4. $y = -\frac{1}{2}(x - 1)^2$

5. $y = -3(x - 3)^2 + 3$

6. $y = 0.21(x + 4.6)^2 - 2.95$

② MATCH ONE EQUATION WITH THE CORRECT PARABOLA.

A) $y = -5(x + 6)^2 + 2$

D) $y = -\frac{1}{8}(x - 4)^2 + 2$

G) $y = -2.5(x + 3)^2 + 1$

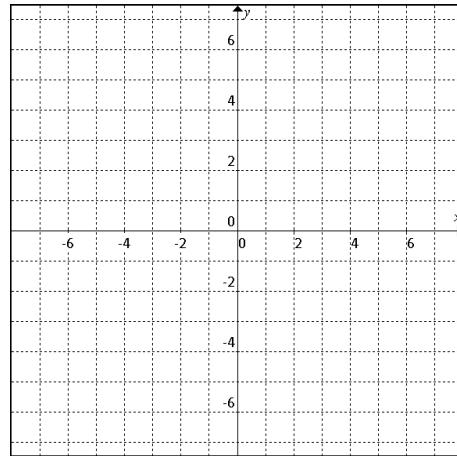
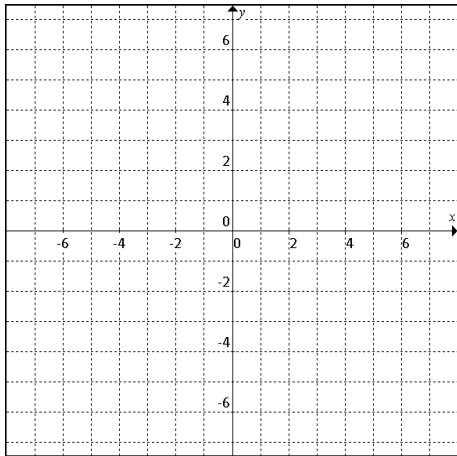
B) $y = \frac{2}{3}(x - 1)^2$

E) $y = \frac{3}{2}(x + 3)^2 - 2$

H) $y = -\frac{1}{4}(x - 2)^2 + 1$

C) $y = -(x - 4)^2 - 2$

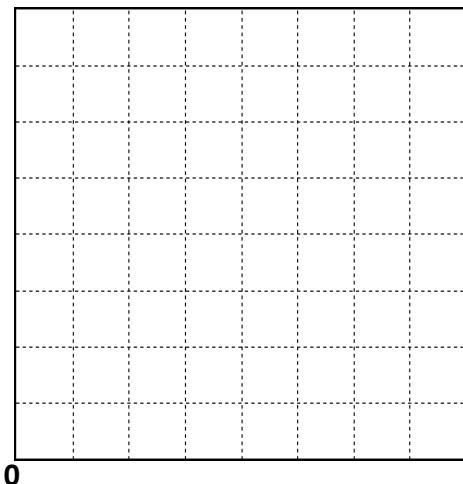
F) $y = \frac{1}{3}(x + 3)^2 - 1$



③ COMPLETE THE TABLE

EQUATION	stretch/ compression factor	vertical reflection	horizontal/ vertical translation	vertex	axis of symmetry
$y = -3(x - 4)^2$					
$y = 0.95x^2 + 3$					
	2.4	yes	left 5, up 1		

④ DESCRIBING THE TRANSFORMATIONS & SKETCHING

A) $y = -2(x - 3)^2 + 4$


B) $y = \frac{1}{2}(x + 1)^2 - 2$

⑤ APPLICATIONS

The path of a baseball is parabolic and can be modeled by the equation $h = -5(t - 3)^2 + 46.2$, where t = time in seconds and h = height in metres.

- A) At what height was the ball hit?
- B) What was the maximum height reached by the baseball?
- C) When did the baseball reach its maximum height?
- D) Sketch the graph that represents the height of the baseball over time.
- E) Approximately when did the ball hit the ground?

