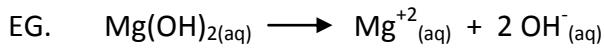
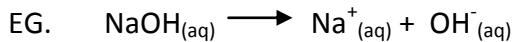
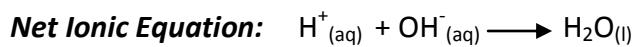
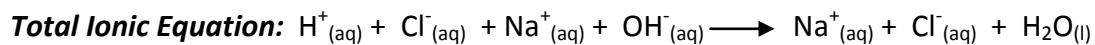
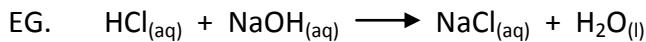


SCH 3U

ACID & BASE THEORY



PROPERTY	ACIDS	BASES
Taste	Sour	Bitter
Feel	No characteristic feel	Slippery
Phenolphthalein	Colourless	Pink
Litmus paper	Turns blue litmus red	Turns red litmus blue
Reaction with $Mg_{(s)}$ and other active metals	H_2 gas releases	No reaction
Reaction with $NaHCO_3$	CO_2 releases	No reaction
Formation	$NM-O_x + H_2O \rightarrow$ acids	$M-O_x + H_2O \rightarrow$ bases
Neutralization	acid + base \rightarrow salt + water	base + acid \rightarrow salt + water

ARRHENIUS DEFINITION (1887)




ACID -- substance that dissociates in water to form H^+ (hydrogen ions).

BASE -- substance that dissociates in water to form OH^- (hydroxide ions).

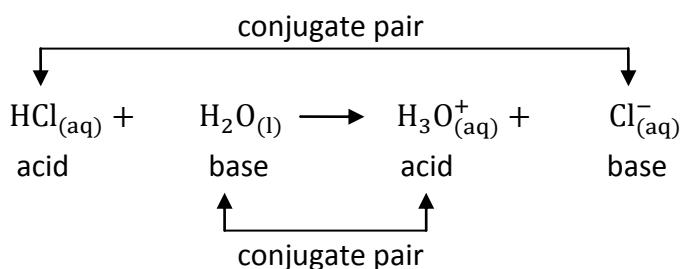
... Explains **neutralization**:

PROBLEMS with Arrhenius Theory:

- $\text{H}^+_{(\text{aq})}$ (bare proton) does not exist-- instead the hydrogen ion attaches to polar H_2O
$$\text{H}^+_{(\text{aq})} + \text{H}_2\text{O}_{(\text{l})} \longrightarrow \text{H}_3\text{O}^+_{(\text{aq})}$$

hydronium ion
- ammonia (NH_3) is a base, but does not contain OH^- ions.
$$\text{NH}_3_{(\text{g})} + \text{H}_2\text{O}_{(\text{l})} \longrightarrow \text{NH}_4^+_{(\text{aq})} + \text{OH}^-_{(\text{aq})}$$
- many salt solutions are basic -- ones that contain carbonate ion.
- some neutralizations do not produce water -- $\text{NH}_3_{(\text{g})} + \text{HCl}_{(\text{g})} \longrightarrow \text{NH}_4\text{Cl}_{(\text{s})}$
- only accounts for water as a solvent.

BRONSTED-LOWRY THEORY OF ACIDS & BASES

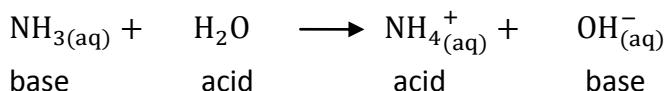
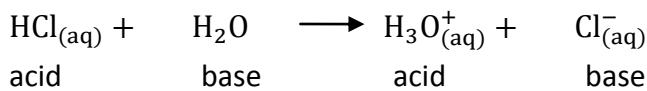

ACIDS -- proton (H^+) donor

BASES -- proton (H^+) acceptor

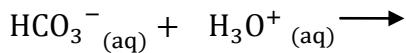
- All Arrhenius acids are Bronsted acids -- both contain H⁺ ion
- Any negative ion can be a Bronsted base
- Can use solvents other than H₂O.
- When H₂O is the solvent, chemists use Bronsted definitions.
- Acid-base reactions involve proton H⁺ transfer.

CONJUGATE ACID-BASE PAIRS:

- 2 substances that differ from each other by only **one** proton are referred to as a conjugate acid-base pair.

conjugate acid = particle formed when the base receives H^+
conjugate base = particle left when H^+ is removed from acid

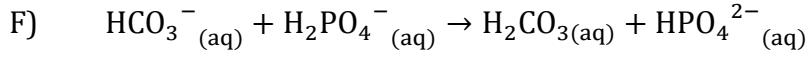
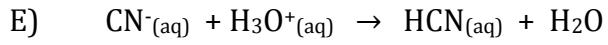
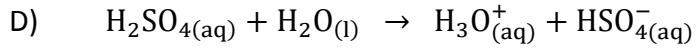
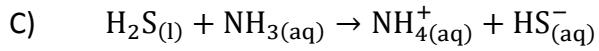
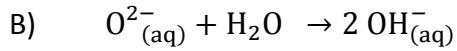
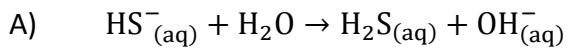

AMPHOTERIC SUBSTANCES:

- Substances that be either acids or bases depending on the other substance present.

EG. H_2O is a common example of an amphoteric substance, as shown in the following:

EG. Illustrate the amphoteric behaviour of HCO_3^- with an acid and with a base.

EXERCISE:







1. If each of the following is an acid, name its conjugate base:

2. If each of the following is a base, name its conjugate acid:

3. Identify the conjugate acid-base pairs in the following reactions:

4. Identify substances in #3 above which are amphiprotic (aka amphoteric). Then illustrate their amphiprotic behaviour.