

MCR 3U

PART 1: ARITHMETIC SEQUENCES

Arithmetic sequences: sequences in which successive terms are determined by adding or subtracting the same value.

Examples:

1. 6, 10, 14, 18, ...

3. 2, $\frac{4}{3}$, $\frac{2}{3}$, 0, $-\frac{2}{3}$, ...

2. 7, -2, -11, -20, ...

4. $x - 2$, $2x + 1$, $3x + 4$, ...

In any sequence,

t_1 = first term

t_2 = second term

...

t_n = *n*th term or general term or general formula

EXAMPLE 1: Given $t_n = 3 - 8n$, find the first 4 terms.

EXAMPLE 2: Given $t_n = \frac{4n+3}{2}$, find the fifth and twentieth terms.

In general, if the common difference between terms is represented by the symbol “ d ”, the general formula for an arithmetic sequence is

$$t_n = t_1 + (n - 1)d$$

where n = number of terms, or the position of a term

d = common difference

PROOF:

The general arithmetic sequence is...

EXAMPLE 3: Given the sequence of terms $4, -2, -8, \dots$ find the general formula. Find t_{50} .

EXAMPLE 4: How many terms are in the sequence $12, 20, 28, \dots, 316$?

EXAMPLE 5: In an arithmetic sequence, the seventh term is 121 and the fifteen term is 193. Find the first term and the common difference. Then determine the general formula for the sequence.

EXAMPLE 6: Brandon earns \$20 000 in his first year as a waiter. His annual salary increases each year by \$4 000.

- A) Write a general formula for Brandon's salary in any given year.
- B) Determine Brandon's salary in his twelfth year of service.

PART 2: ARITHMETIC SERIES

1, 3, 5, 7, ... is called an Arithmetic Sequence, since it has a common difference of $3 - 1 = 2$.

An **ARITHMETIC SERIES** is the sum of the terms of an arithmetic sequence. In the sequence above, $1 + 3 + 5 + 7 + \dots$ would represent the arithmetic series.

The symbol S_n represents the **SUM of the first n terms** of a series.

For instance, S_5 represents the sum of the first 5 terms.

For the above series, $S_5 = 1 + 3 + 5 + 7 + 9 = 25$.

In some cases, such as the one above, the calculation is simple; however, calculating S_{32} using the same method as above is inefficient.

Below, we find the proof of the formula for S_n of an arithmetic series.

First, consider the case of S_5 for the series $1 + 3 + 5 + 7 + 9$:

$$\begin{array}{r} S_5 = 1 + 3 + 5 + 7 + 9 \\ S_5 = 9 + 7 + 5 + 3 + 1 \end{array}$$

Adding the 2 equations together produces... $2S_5 = 10 + 10 + 10 + 10 + 10$

Solving for S_5 ...

$$2S_5 = 50$$

$$S_5 = 25$$

Using general symbols, the formula for S_n of an arithmetic series developed.

$$\textcircled{1} \quad S_n = t_1 + (t_1 + d) + (t_1 + 2d) + (t_1 + 3d) + \dots + (t_1 - d) + t_n$$

$$\textcircled{2} \quad S_n = t_n + (t_n - d) + (t_n - 2d) + (t_n - 3d) + \dots + (t_1 + d) + t_1$$

$$\textcircled{1} + \textcircled{2} \quad 2S_n = (t_1 + t_n) + (t_1 + t_n) + (t_1 + t_n) + (t_1 + t_n) + \dots + (t_1 + t_n) + (t_1 + t_n)$$

Simplify: $2S_n = n(t_1 + t_n)$

$$S_n = \frac{n(t_1 + t_n)}{2}$$

where $n = \text{number of terms in the sum}$

t_1 and t_n are the first and last terms

EXAMPLE 1: Find S_{24} for the series defined by $t_n = 4 - 3n$.

EXAMPLE 2: Find the sum of the series $6 + 10 + 14 + \dots + 170$.

EXAMPLE 3: Find the sum of the first 50 terms of the series $-7 - 5 - 3 - 1 - \dots$

EXAMPLE 4: Given an arithmetic series has $S_5 = 35$ and $S_{12} = 252$, determine the first term and the common difference. Also, determine the general formula for the sequence.