


## SCH 4U

### WEAK BASES & BUFFERS



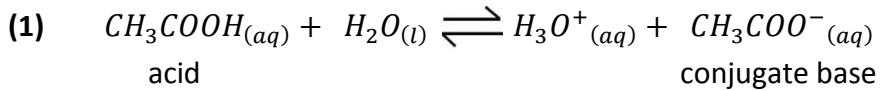
**Base dissociation constant:** 
$$K_b = \frac{[HB^+][OH^-]}{[B]}$$

#### EXAMPLES:

1. Caffeine (cafN) is a weak base with a  $K_b = 4.1 \times 10^{-4}$ .  
What is the pH of a 0.70 mol/L solution?
2. Calculate the  $K_b$  of a 0.100 mol/L weak base whose pH is 10.62.

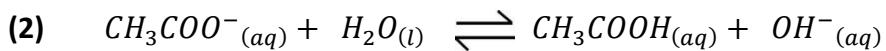
### ACIDS & CONJUGATE BASES

RECALL: 
$$K_w = 1.0 \times 10^{-14} = [H_3O^+][OH^-]$$
 for all conjugate acid/base systems.


#### **PROPERTIES OF ACIDS/BASES & THEIR CONJUGATES:**

- ① Stronger the acid, the weaker its conjugate base.  
Stronger the base, the weaker its conjugate acid.
- ② Conjugate of a strong acid is always a weak base.  
Conjugate of a strong base is always a weak acid.

### *PROOF of $K_w = K_a \times K_b$*


Consider the acetic acid and the acetate ion mixture – ACID & its CONJUGATE BASE mixture

- Acetic acid dissociates in water (**reaction (1)**) to forms hydronium ions and acetate ions



The  $K_a$  formula follows  $\Rightarrow$  
$$K_a = \frac{[CH_3COO^-][H_3O^+]}{[CH_3COOH]}$$

- Acetate salts dissociate when dissolved and the acetate ion (which is the conjugate base of acetic acid) reacts with water (**reaction (2)**).



The  $K_b$  formula follows  $\Rightarrow$  
$$K_b = \frac{[CH_3COO^-][OH^-]}{[CH_3COOH]}$$

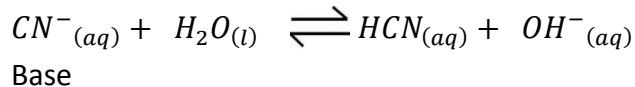
Combining (1) and (2):

$$K_a \times K_b = \frac{[CH_3COO^-][H_3O^+]}{[CH_3COOH]} \times \frac{[CH_3COOH][OH^-]}{[CH_3COO^-]}$$

$$= [H_3O^+][OH^-]$$

$$= K_w = 1.0 \times 10^{-14}$$

Based on the above proof, we can conclude:


$$K_a \times K_b = K_w = 1.0 \times 10^{-14}$$

We can use the above relationship to convert between the values of  $K_a$  and  $K_b$ .

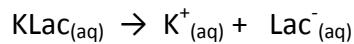
## **SOLVING PROBLEMS USING SALTS**

### **EXAMPLES:**

**①** Find the  $K_b$  for  $\text{CN}^-$  ion (not found in Table E.11)



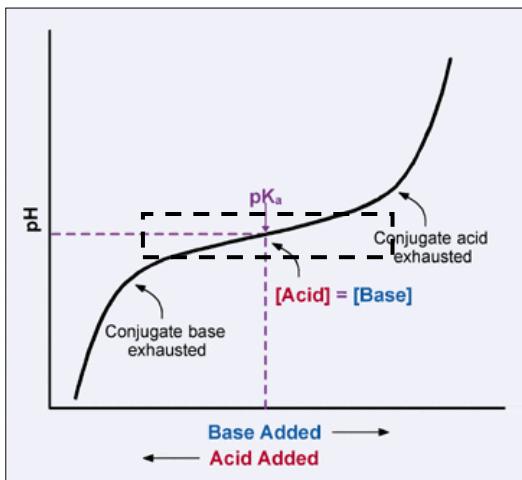
- Find  $K_a$  for HCN in Table E.9
- We use  $K_a \times K_b = K_w$  to find  $K_b$ .


$$K_b = \frac{K_w}{K_a} = \frac{1.0 \times 10^{-14}}{6.2 \times 10^{-10}} = 1.6 \times 10^{-5}$$

**②** Find  $K_b$  for methanoate ion  $\text{HCOO}^-$ .

**③** What is the pH of a 0.100 mol/L solution of sodium cyanide (NaCN)?

- Salt dissociation equation.
- Conj. acid/base eq'n with anion
- ICE table
- $K_b$
- Solve for  $[\text{OH}^-]$  with  $K_c$  expression
- $p\text{OH} = -\log[\text{OH}^-]$
- $p\text{H} = 14 - p\text{OH}$

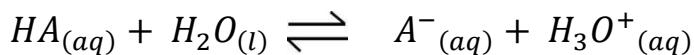


**④** What is the pH of a 0.0500 mol/L solution of potassium lactate?



## BUFFER SOLUTIONS

## ① ACID/CONJ BASE BUFFERS


A solution containing a mixture of a weak acid and its conjugate base (the anion from its salt) is able to resist change in pH when strong acids or bases are added.



**BUFFER CAPACITY** = how much acid/base can be absorbed before the pH starts to change drastically.

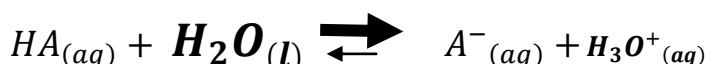
## HOW DO ACID/CONJ BASE BUFFERS WORK?

- mixture of HA (weak acid) and NaA (its salt)



By adding a strong acid ( $\text{H}_3\text{O}^+$ ) or base ( $\text{OH}^-$ ), these new components put a stress on the equilibrium and are removed, keeping pH relatively stable.

## **ILLUSTRATION/EXPLANATION:**


① Add strong acid ( $\text{H}_3\text{O}^+$ )



Reaction shifts left to remove excess hydronium ion  
and keep pH constant

② Add strong base ( $\text{OH}^-$ )

$\text{OH}^-$  reacts with  $\text{H}_3\text{O}^+$  to produce  $\text{H}_2\text{O}$

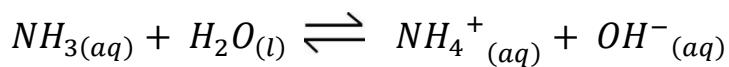


Reaction shifts right to replace reduced hydronium ion  
and keep pH constant

## **CHARACTERISTICS OF BUFFERS:**

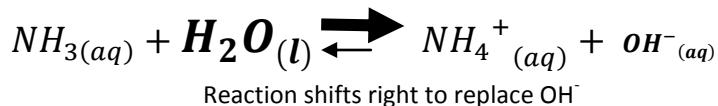
- ① More concentrated the components of buffer, more pH change it can resist.
- ②  $[\text{Acid}] = [\text{Salt}]$ , buffer is at its maximum capacity to resist change **(buffer capacity)**.

## ② BASE/CONJ ACID BUFFERS


A solution that contains a weak base/conjugate acid mixture, that is able to resist changes in pH when strong acids or bases are added.

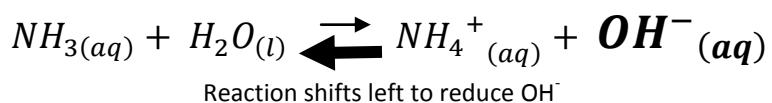
Eg.  $\text{NH}_3$  and  $\text{NH}_4^+$  mixture  
 $\downarrow$   $\downarrow$   
 ammonia ammonium ion  
 (for instance  $\text{NH}_4\text{Cl}$ )

Eg.  $\text{NH}_2\text{CONH}_2$  and  $\text{NH}_2\text{CONH}_3^+$  mixture  
 $\downarrow$   
urea  $\downarrow$   
ureum ion  
(for instance  $\text{NH}_2\text{CONH}_3\text{Br}$ )


## HOW DO BASE/CONJ ACID BUFFERS WORK?

**Example:** mixture of  $\text{NH}_3$  (weak base) and  $\text{NH}_4\text{Cl}$  (its salt)




$[\text{NH}_3]$  high       $[\text{NH}_4^+]$  high  
 (weak base)      (from soluble salt)

① Add strong acid ( $\text{H}_3\text{O}^+$ )  
• reacts with  $\text{OH}^-$  to make water.



② Add strong base ( $\text{OH}^-$ )

- increase  $[\text{OH}^-]$

