


MDM 4U

BINOMIAL DISTRIBUTIONS

where X = random variable
 B = binomial distribution
 n = number of trials
 p = probability of success
 q = probability of failure ($q = 1-p$)
 $E(x)$ = expectation
 $P(X=x)$ = probability of a set number of successes in n trials

1. Consider the experiment of rolling a die 4 times. The tree diagram to the right indicates the options of rolling or not rolling a 5.

Determine the probability distribution of the number of 5's that appear.

2. A die is rolled 6 times. Let X = number of 4's that appear.

- What is the expected number of 4's?
- Determine the probability of the expected number of 4's.

3. A die is rolled 60 times. Let X = number of 4's that appear.

- What is the expected number of 4's?
- Determine the probability of the expected number of 4's.

4. If the manufacturing plant of M&Ms produces 40% red candies and randomly distributes all candies into different sized bags,

- what is the expected number of red candies in a bag of 10 candies?
- what is the expected number of red candies in a bag of 200 candies?
- what are the probabilities of these expected number of candies in a bag?
- what is the probability of getting at least 2 red candies in a bag of 10 candies?

5. Given $X \sim B(n, p)$ and the table of probabilities, determine the values of n , $E(x)$, and p .

X	0	1	2	3	4
$P(X = x)$	$\frac{17}{125}$	$\frac{26}{125}$	$\frac{43}{125}$	$\frac{21}{125}$	$\frac{18}{125}$

ANSWERS: 2) 1; .4019, 3) 10; .1370, 4) 4; 80; .251; .058, 5) 125; 1.976; .0158