

WRITING CHEMICAL FORMULAS & NAMING COMPOUNDS

PART A: THE BUILDING BLOCKS

Chemical formulas provide 2 pieces of information:

- elements that make up the compound.
- number of atoms of each element that are present in a compound.

COVALENT COMPOUNDS

- chemical formula represents how many of each type of atom are in each molecule.
- Eg. C_2H_6 ; H_2O

IONIC COMPOUNDS

- chemical formula represents the ratio in which ions are present in the compound.
- Eg. MgO ; $Al_2(SO_4)_3$

Using Valence Numbers to Describe Bonding Capacity

As a general rule, based on the octet rule, if 2 atoms form...

- an ionic bond, valence indicates charges on the ions formed.
- a covalent bond, valence indicates how many electrons each atom contributes to the covalent bond.

Eg. Sodium is a Group 1A element and has 1 electron in its valence shell. Na has a valence of 1+ and forms an ionic bond with a non-metal.

Eg. Sulfur is a Group VIA element and has 6 valence electrons. Its bonding capacity is 6, which means that it will either form an ionic charge of 2- with a metal, or it will share 2 of its valence electrons in a covalent bond with a non-metal.

METALS WITH SINGLE & MULTI-VALENCES -- (the cation)

- **Group A** elements that form cations have valences that correspond with their group number, without exception. These metals have a **single** valence. For instance, Calcium is in group IIA, so its valence is 2+.
- **Group B** elements: many elements belonging to transition metals or post-transition metals form cations with different valences. For instance, Iron is a transition metal and it can form 2 different valences, 2+ and 3+. Elements with **multi-valences** can form compounds with different chemical formulas having different physical and chemical properties.
- when naming an ionic compound containing a multi-valence metal, the valence of the metal must be stated.
- there are 2 systems of naming compounds with multi-valences: the Stock System & the Classical System.

STOCK SYSTEM

- naming a compound with a metal having more than one valence, include the valence in parentheses, written in **Roman numerals**.

Eg. Fe^{2+} is written as iron (II)

Cu^{1+} is written as copper (I)

Fe^{3+} is written as iron (III)

Cu^{2+} is written as copper (II)

CLASSICAL SYSTEM

- pre-dates the Stock System
- uses the Latin name of the metal
- metal with **smaller valence ends in -ous**
- metal with **larger valence ends in -ic**

Common Type II Cations		
Ion	Stock System	Traditional System
Fe^{3+}	iron (III)	ferric
Fe^{2+}	iron (II)	ferrous
Cu^{2+}	copper (II)	cupric
Cu^{1+}	copper (I)	cuprous
Co^{3+}	cobalt (III)	cobaltic
Co^{2+}	cobalt (II)	cobaltous
Sn^{4+}	tin (IV)	stannic
Sn^{2+}	tin (II)	stannous
Pb^{4+}	lead (IV)	plumbic
Pb^{2+}	lead (II)	plumbous
Hg^{2+}	mercury (II)	mercuric
Hg_2^{2+}	mercury (I)	mercurous

*Mercury (I) ions are always bound together in pairs to form Hg_2^{2+}

ELECTRONEGATIVITY & ORDER -- (what about the anion?)

- generally, the element with the lower electronegativity (EN) is written first, followed by the element with the greater EN.
- ionic compounds -- metals have lower EN than non-metals.

METAL + NON-METAL

- covalent compounds -- order is determined by consulting the periodic table.

NON-METAL + NON-METAL

(lower EN) (higher EN)

GIVEN THE NAME or WHEN NAMING the compound...

- in most cases, there are 2 parts to the name
- ionic compounds: name of cation is followed by name of anion
- covalent compounds: name of 2 non-metals

Specifically in terms of ionic compounds,

FIRST PART	SECOND PART
<ul style="list-style-type: none">• name of element in periodic table• if metal is multivalent, include Roman numeral valence or use Classical system	<ul style="list-style-type: none">• if monoatomic (1 type of atom) ending of name changes to -ide<ul style="list-style-type: none">* there are exceptions• if polyatomic (more than 1 type of atom, then consult next page)

POLYATOMIC IONS

- a group of atoms that contain a single charge.
- atoms in the ion are covalently bonded to one another
- behave as a single unit and treated as a single ion
- often remain unchanged in simple chemical reactions due to strong bonds holding component atoms together

PO_4^{3-}
phosphate ion
= group of 1 P and 4 O's
with an overall charge of 3-

Valence = -1			
Ion	Name	Ion	Name
CN^-	cyanide	H_2PO_3^-	dihydrogen phosphite
CH_3COO^-	acetate	H_2PO_4^-	dihydrogen phosphate
ClO^-	hypochlorite	MnO_4^-	permanganate
ClO_2^-	chlorite	NO_2^-	nitrite
ClO_3^-	chlorate	NO_3^-	nitrate
ClO_4^-	perchlorate	OCN^-	cyanate
HCO_3^-	hydrogen carbonate	HS^-	hydrogen sulfide
HSO_3^-	hydrogen sulfite	OH^-	hydroxide
HSO_4^-	hydrogen sulfate	SCN^-	thiocyanate

Valence = -2			
Ion	Name	Ion	Name
CO_3^{2-}	carbonate	O_2^{2-}	peroxide
$\text{C}_2\text{O}_4^{2-}$	oxalate	SiO_3^{2-}	silicate
CrO_4^{2-}	chromate	SO_3^{2-}	sulfite
$\text{Cr}_2\text{O}_7^{2-}$	dichromate	SO_4^{2-}	sulfate
HPO_3^{2-}	hydrogen phosphite	$\text{S}_2\text{O}_3^{2-}$	thiosulfate
HPO_4^{2-}	hydrogen phosphate		

Valence = -3			
Ion	Name	Ion	Name
AsO_3^{3-}	arsenite	PO_3^{3-}	phosphite
AsO_4^{3-}	arsenate	PO_4^{3-}	phosphate

COMPOUNDS WITH POLYATOMIC IONS

- Use patterns such as T41 and T43

PATTERNS in the names of polyatomic ions:

- know the base ions ending in **-ate**, then the other ions follow...

# of O-atoms prefix and suffix			
$x - 2$	<i>hypo</i>	_____	<i>ite</i>
$x - 1$		_____	<i>ite</i>
X		_____	ate
$x + 1$	<i>per</i>	_____	<i>ate</i>

Eg. If BrO_3^{1-} is the bromate ion, then...

BrO^{1-} is hypobromite ion

BrO_2^{1-} is bromite ion

BrO_3^{1-} is bromate ion

BrO_4^{1-} is perbromate ion

Eg. If HPO_4^{2-} is the hydrogen phosphate ion, then...

HPO_2^{2-} is hydrogen hypophosphite ion

HPO_3^{2-} is hydrogen phosphite ion

HPO_4^{2-} is hydrogen phosphate ion

HPO_5^{2-} is hydrogen perphosphate ion

Notice the **valence** of the polyatomic ions is the same; as the number of O-atoms changes, the prefix and suffix changes. These changes are consistent with all groups of polyatomic ions. Not all polyatomic ions contain the 4 names.

PART B: WRITING CHEMICAL FORMULAS

1. IONIC COMPOUNDS

- Write symbols for the ions. Place brackets around polyatomic ions that are present. *Remember: metal + non-metal.*
- Write the valence above each ion or polyatomic ion.
- Criss-cross the valences to indicate the number of each ion as a subscript.
- Tidy up the formula. Reduce the NEW subscripts (from the criss-cross) to lowest terms. Remove "1"s on monoatomic ions and brackets only when polyatomic ion has subscript of "1".

Eg. Write the formula for ammonium carbonate.

1. $(\text{NH}_4)^{1+} (\text{CO}_3)^{2-}$
2. $(\text{NH}_4)_2 (\text{CO}_3)_1$
3. $(\text{NH}_4)_2(\text{CO}_3)_1$
4. $(\text{NH}_4)_2\text{CO}_3$ ammonium carbonate

Exercise: Write the chemical formula for each compound.

1. sodium phosphate	2. magnesium chlorate
3. copper (II) nitride	4. iron (III) permanganate
5. stannic chlorite	6. aurous sulfide

2. COVALENT COMPOUNDS

- add prefix to each non-metal to indicate the number of atoms of each element in one molecule of compound
- if prefix is left out on the first element, there is only 1 atom of the element

Exercise: Write the chemical formula for each compound.

1. dinitrogen pentoxide	2. nitrogen trichloride
-------------------------	-------------------------

PART C: NAMING CHEMICAL COMPOUNDS

1. IONIC COMPOUNDS

A) METAL (group A) + (NON-METAL or polyatomic ion)

- **BINARY** ionic compounds -- METAL + NON-METAL

METAL CATION

-- use name of metal from periodic table

NON-METAL ANION

-- change ending to **-ide**

Eg. sulfur \longrightarrow sulfide
phosphorus \longrightarrow phosphide
oxygen \longrightarrow oxide

- **TERNARY** ionic compounds -- METAL + polyatomic ion

-- consists of 3 or more types of elements

METAL CATION

-- use name of metal from periodic table

POLYATOMIC ANION

-- see Page 98 Table 3.4 and patterns in naming these ions

-- most ions end in **-ate** or **-ite**, with few exceptions

Eg. Name K_3N

Potassium has valence 1+
Therefore, potassium nitride.

Eg. Name $Ca_3(PO_3)_2$

Calcium has valence of 2+,
Therefore, calcium phosphite.

Name the following compounds.

1. Na_2S

2. Al_2O_3

3. $Ba(ClO_3)_2$

4. K_3HPO_3

5. KCH_3CO_2

6. $(NH_4)_2SO_3$

B) METAL (group B) + (NON-METAL or polyatomic ion)

- rules of naming are similar to those in part A (group A metals)

GROUP B metals have multi-valences; therefore, there is a required step to determine the valence of the group B metal.

- use TOTAL negative charges to determine the TOTAL positive charges
- (TOTAL Positive Charge) + (TOTAL Negative Charge) = 0
- to determine the appropriate **valence** on the GROUP B metal, divide the TOTAL positive charges by the number of atoms making up the cation.

Eg. Name Au_3P

Gold has 2 valences -- 1+, 3+

Phosphorus has valence 3-

TOTAL negative charge = 3-

TOTAL positive charge = 3+

valence of Au = 1+

(3 atoms of Au share the total 3+)

NAME: gold (I) phosphide
aurous phosphide

Eg. Name $\text{Sn}(\text{SO}_4)_2$

Tin has 2 valences -- 2+, 4+

Sulfate ion has valence 2-

TOTAL negative charge = 4-

TOTAL positive charge = 4+

valence of Sn = 4+

(1 atom of Sn accepts total charge)


NAME: tin (IV) sulfate
stannic sulfate

Name the following compounds.

2. COVALENT COMPOUNDS

- prefix is added to each non-metal - indicates the number of atoms of each element in one molecule of compound
- mono- is left out if there is only 1 atom of the first element
- if a prefix is added AND -a or -o is followed by an "o", drop the -a / -o.

PRACTICE:

1. State the formula of each of the following ionic compounds. Watch out! There is a mix of binary compounds and polyatomic compounds. Do you remember how to tell the difference?

eg.	sodium nitrite	NaNO ₂	eg.	sodium nitride	Na ₃ N
(a)	calcium sulfate	_____	(b)	sodium <u>sulfide</u>	_____
(c)	lead (II) phosphate	_____	(d)	aluminum <u>chloride</u>	_____
(e)	mercury (I) nitrate	_____	(f)	lithium nitride	_____
(g)	copper (II) <u>phosphide</u>	_____	(h)	magnesium oxide	_____
(i)	tin (IV) phosphate	_____	(j)	potassium dichromate	_____
(o)	ammonium sulphate	_____	(p)	potassium <u>sulfate</u>	_____
(q)	sodium cyanide	_____	(r)	lead (II) chromate	_____
(s)	iron (III) hydroxide	_____	(t)	ammonium nitrate	_____
(u)	sodium chlorate	_____	(v)	ammonium phosphate	_____
(w)	zinc <u>perchlorate</u>	_____	(x)	iron (II) <u>sulfite</u>	_____
(y)	magnesium hypochlorite	_____	(z)	ammonium <u>sulfate</u>	_____
(A)	barium acetate	_____	(B)	sodium dichromate	_____
(C)	tin (IV) nitrate	_____	(D)	potassium permanganate	_____
(E)	sodium <u>perchlorate</u>	_____	(F)	silver <u>sulfide</u>	_____
(G)	tin (II) hypochlorite	_____	(H)	iron (III) <u>perchlorate</u>	_____

2. Write the formula for each of the following:

(a)	oxygen <u>difluoride</u>	_____	(b)	dinitrogen <u>tetroxide</u>	_____
(c)	silicon dioxide	_____	(d)	silicon <u>tetrafluoride</u>	_____
(e)	<u>diiodine pentoxide</u>	_____	(f)	<u>dihydrogen</u> monoxide	_____
(g)	phosphorus <u>trichloride</u>	_____			

3. Name the following compounds. Use both the Stock and classical method if possible.

eg. $\text{Fe}_2(\text{Cr}_2\text{O}_7)_3$ iron (III) dichromate or ferric dichromate

(a) NaNO_3	_____	(b) $\text{Ca}(\text{NO}_2)_2$	_____
(c) NH_4Br	_____	(d) Rb_2SO_4	_____
(e) CaSO_4	_____	(f) $\text{Pb}(\text{NO}_3)_2$	_____
(g) $\text{Cu}(\text{CH}_3\text{CO}_2)_2$	_____	(h) Na_3PO_4	_____
(i) $\text{Al}(\text{OH})_3$	_____	(j) ZnSO_3	_____
(k) NH_4ClO_4	_____	(l) LiClO	_____
(m) $\text{Mg}(\text{NO}_3)_2$	_____	(n) $\text{Mg}(\text{NO}_2)_2$	_____
(o) Li_2CO_3	_____	(p) $\text{Fe}_2(\text{SO}_4)_3$	_____
(q) $(\text{NH}_4)_2\text{S}$	_____	(r) $\text{Sn}_3(\text{PO}_4)_2$	_____

4. Write an IUPAC name for each of the following compounds:

(a) CO_2	_____	(b) Cl_2O_7	_____
(c) SO_2	_____	(d) P_2O_5	_____
(e) NO	_____	(f) SCl_2	_____
(g) PCl_3	_____	(h) CF_4	_____
(i) SbCl_3	_____	(j) CBr_4	_____