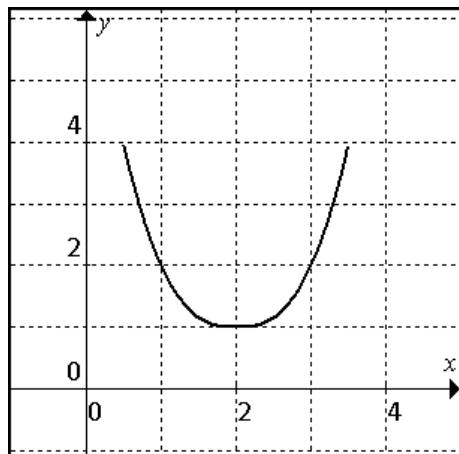


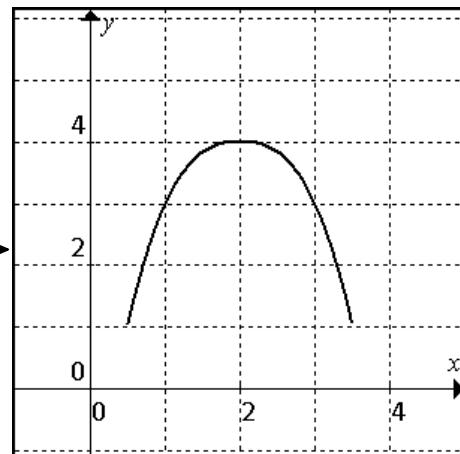
MCV 4U

CONCAVITY & the SECOND DERIVATIVE TEST



When a function lies above all of its tangents, the graph is CONCAVE UP.

When a function lies below all of its tangents, the graph is CONCAVE DOWN.



POINT OF INFLECTION (POI)

The following occur at all POI:

- The graph changes from one concavity to the other.
- $f''(x)$ changes sign.
- $f''(x) = 0$ or *dne*, but this may be true at other points that are not POI.
- A tangent drawn at the point of inflection crosses the curve at that point.

FERMAT'S THEOREM:

All points of inflection have...

- $f'(x) = 0$ or *dne*.
- $f''(x) = 0$ or *dne*.

BUT the converse is not necessarily true.

That is, if $f''(x) = 0$ or *dne*, the point may not be a poi. In this case, the signs of $f''(x)$ to the left and right of the critical point where $f''(x) = 0$ or *dne* are both positive or both negative.

TEST FOR CONCAVITY:

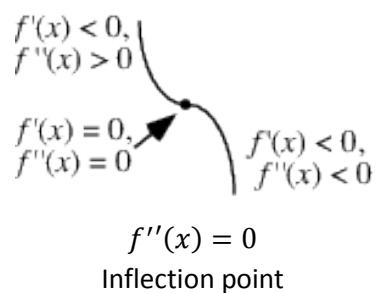
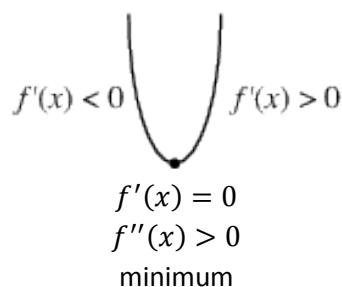
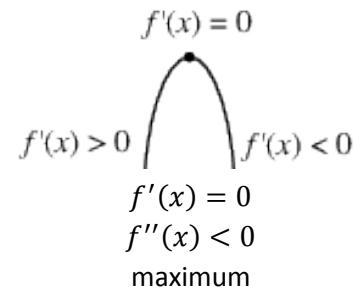
- If $f''(x) > 0$ on an interval from $[a, b]$, then the graph is CONCAVE UPWARD.
- If $f''(x) < 0$ on an interval from $[a, b]$, then the graph is CONCAVE DOWNWARD.
- Use an **interval chart** to determine concavity by setting $f''(x) = 0$. This is similar to the chart used to determine intervals of increase or decrease.
- Concavity is very helpful in sketching a curve, especially if there are no critical points and the curve is relatively shallow.

SECOND DERIVATIVE TEST:

- A second method used to determine whether a function has a local maximum, a local minimum, or neither, at a critical number.
- The test does not apply if $f''(c) = 0$ or dne (at a cusp, V.A., or other special cases).

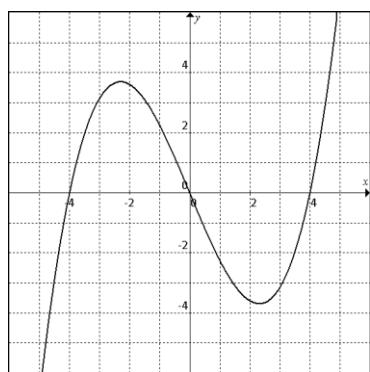
Let c be a critical number of a function f .

- ① If $f'(c) = 0$ and $f''(c) > 0$ then f has a **local minimum** at c .
- ② If $f'(c) = 0$ and $f''(c) < 0$ then f has a **local maximum** at c .

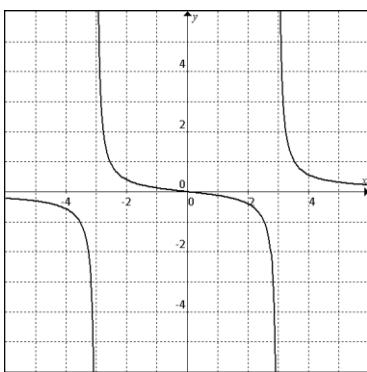


EXAMPLE ①: State the intervals in which the function is concave up and concave down.

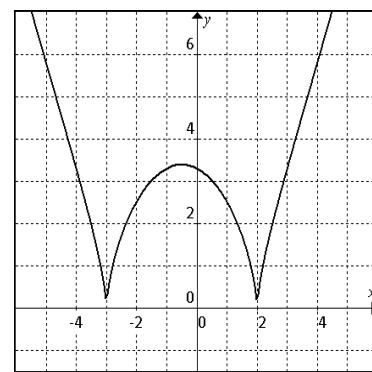
A)



B)



C)



EXAMPLE (2): For each function,

- Determine the critical values.
- Complete an analysis table to determine intervals of **increase and decrease** and intervals of **concavity**.
- Identify the max/min and poi in the analysis table.

A) $f(x) = 4x^3 - 12x^2$

B) $f(x) = \frac{2}{x^2 - 1}$

C) $f(x) = \frac{2x}{x^2 + 1}$

D) $f(x) = x^4 - 4x^3 - 18x^2 + 2$

E) $f(x) = (x - 2)^{\frac{4}{3}}$

EXAMPLE (3): Use the second derivative test to determine if a critical point corresponds with a local maximum or a local minimum.

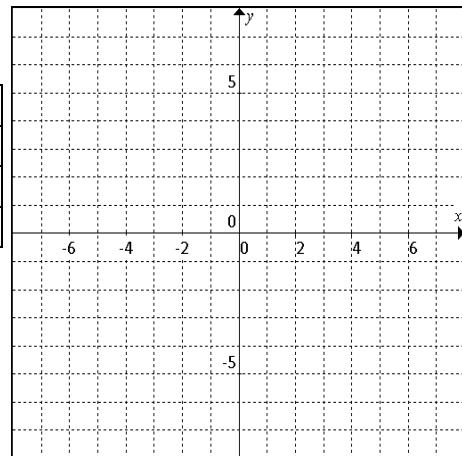
A) $f(x) = x^4 - 8x^2 + 16$

B) $f(x) = \frac{x^3}{x^2 - 4}$

EXAMPLE (4): Use the limited information to complete each analysis table.
Then sketch the function.

A) $f(x) = \text{polynomial function}$

x	($-\infty, -3$)	($-3, 0$)	($0, 2$)	($2, 4$)	($4, 6$)	($6, \infty$)
$f'(x)$	+	-	-	-	-	
$f''(x)$	-	-	+	-	+	
$f(x)$						

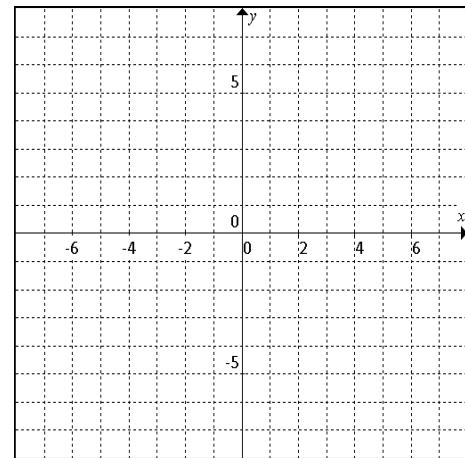


B) $f(x)$ = rational function with HA at $y = 2$

x	($-\infty, -3$)	($-3, 0$)	($0, 2$)	($2, 4$)	($4, 6$)	($6, \infty$)
$f'(x)$	+	-	-	-	+	+
$f''(x)$	+	+	-	+	+	-
$f(x)$						

VA

VA



C) $f(x)$ = rational function with...

$$\begin{array}{lll} \lim_{x \rightarrow -2^-} f(x) = \infty & \lim_{x \rightarrow 2^-} f(x) = -\infty & \lim_{x \rightarrow \pm\infty} f(x) = 1 \\ \lim_{x \rightarrow -2^+} f(x) = -\infty & \lim_{x \rightarrow 2^+} f(x) = -\infty & \end{array}$$

x	($-\infty, -2$)	($-2, 0$)	($0, 2$)	($2, 4$)	($4, 6$)	($6, \infty$)
$f'(x)$					-	-
$f''(x)$					-	+
$f(x)$						

