

MCV 4U

CROSS PRODUCT OF 2 VECTORS

① The **cross product** of 2 vectors, $\vec{a} = (x_1, y_1, z_1)$ and $\vec{b} = (x_2, y_2, z_2)$, is a third vector which is perpendicular to the 2 vectors, and is determined by the following formula:

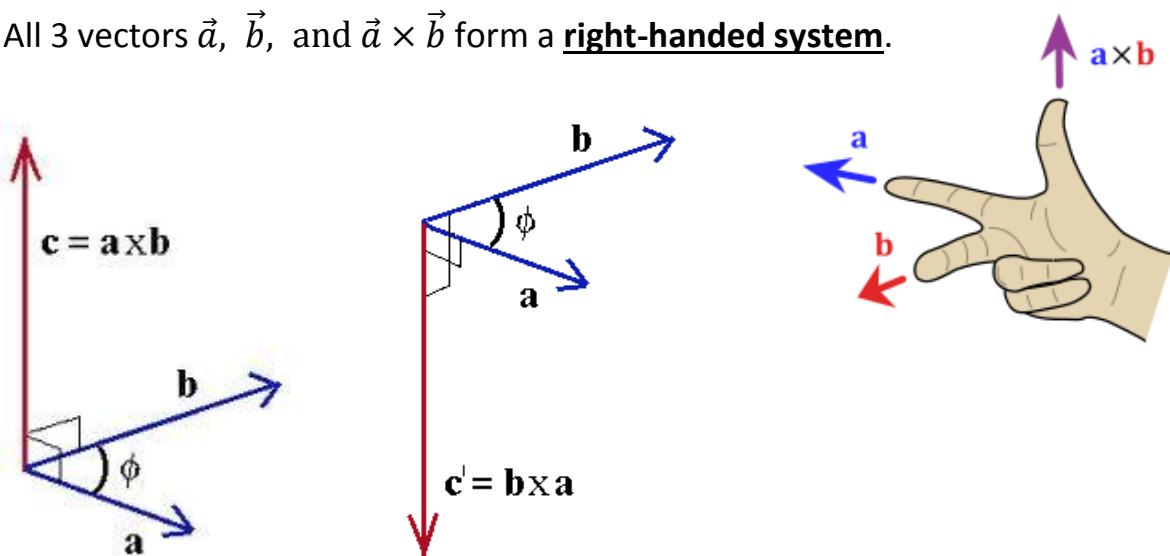
$$\vec{a} \times \vec{b} = \left(\begin{vmatrix} y_1 & z_1 \\ y_2 & z_2 \end{vmatrix}, \begin{vmatrix} z_1 & x_1 \\ z_2 & x_2 \end{vmatrix}, \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} \right)$$

$$\text{where } \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

② If $\vec{v} = \vec{a} \times \vec{b}$, then... $\vec{v} \cdot \vec{a} = 0$ and $\vec{v} \cdot \vec{b} = 0$
which follows from Section 5.3

③ $|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta$; θ = angle between the 2 vectors

④ All 3 vectors \vec{a} , \vec{b} , and $\vec{a} \times \vec{b}$ form a **right-handed system**.



EXAMPLES:

1. Find a vector, \vec{v} , that is perpendicular to both $(1, 3, 2)$ and $(4, -6, 7)$.
Show that \vec{v} is perpendicular to each vector.
2. Find a unit vector perpendicular to $\vec{a} = \hat{i} - 2\hat{j} - 3\hat{k}$ and $\vec{b} = 2\hat{i} + \hat{j} - 4\hat{k}$
3. Show that $\hat{i} \times \hat{k} = -\hat{j}$. [Convert the unit vectors to algebraic vectors.]
4. Given $\vec{u} = (2, 1, 0)$, $\vec{v} = (-2, 3, 1)$ and $\vec{w} = (1, -4, -2)$ calculate each of the following:
[Explain why the cross product in parts A and B must be done before the dot product.]
 - $\vec{u} \times \vec{w} \cdot \vec{v}$
 - $\vec{u} \times \vec{v} \cdot \vec{w}$
 - $\vec{u} \times (\vec{w} \times \vec{v})$