

MCV 4U

THE DOT PRODUCT

①. Dot Product of \vec{u} and \vec{v} is defined as follows:

$$\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \theta \quad \text{where } \theta = \text{angle between the vectors}$$

$$\text{It follows that } \vec{u} \cdot \vec{u} = |\vec{u}| |\vec{u}| \cos 0^\circ = |\vec{u}|^2$$

②. If \vec{u} and \vec{v} are non-zero vectors and $\vec{u} \cdot \vec{v} = 0$, then the vectors are \perp .

Proof: If $\vec{u} \cdot \vec{v} = 0$,

$$\text{Then } |\vec{u}| |\vec{v}| \cos \theta = 0$$

Since \vec{u} and \vec{v} are non-zero vectors,

Then it follows that $\cos \theta = 0$

Therefore, $\theta = \cos^{-1}(0) = \pm 90^\circ$

③. As a result of #1 and #2 above, the following properties exist:

$$\hat{i} \cdot \hat{i} = |\hat{i}|^2 = 1 \quad \hat{i} \cdot \hat{j} = 0$$

$$\hat{j} \cdot \hat{j} = 1 \quad \hat{i} \cdot \hat{k} = 0$$

$$\hat{k} \cdot \hat{k} = 1 \quad \hat{j} \cdot \hat{k} = 0$$

④. Using the properties established in #3 above, we can show an alternative calculation for the dot product.

$$\vec{u} \cdot \vec{v} = (u_x \hat{i} + u_y \hat{j} + u_z \hat{k}) \cdot (v_x \hat{i} + v_y \hat{j} + v_z \hat{k})$$

$$\begin{aligned} &= u_x v_x \hat{i} \cdot \hat{i} + u_x v_y \hat{i} \cdot \hat{j} + u_x v_z \hat{i} \cdot \hat{k} \\ &\quad + u_y v_x \hat{j} \cdot \hat{i} + u_y v_y \hat{j} \cdot \hat{j} + u_y v_z \hat{j} \cdot \hat{k} \\ &\quad + u_z v_x \hat{k} \cdot \hat{i} + u_z v_y \hat{k} \cdot \hat{j} + u_z v_z \hat{k} \cdot \hat{k} \end{aligned}$$

$$\boxed{\vec{u} \cdot \vec{v} = u_x v_x + u_y v_y + u_z v_z}$$

EXAMPLES:

1. Determine the dot product of each pair of vectors.

A) $|\vec{u}| = 6, |\vec{v}| = 4, \theta = 40^\circ$ B) $\vec{u} = (2, -2, 5), \vec{v} = (-1, 6, 3)$

2. Determine 2 vectors that are perpendicular to $\vec{a} = (4, -6)$.

3. Determine the angle between $\vec{u} = (2, -2, 5)$ and $\vec{v} = (-1, 2, 3)$.

4. Given $\vec{u} = (-2, n, 6)$ and $\vec{v} = (1, 4, -3)$, determine the value of n if...

A) the vectors are collinear. B) the vectors are perpendicular.

5. Find a vector that is perpendicular to both $\vec{u} = 3\hat{i} + 4\hat{j}$ and $\vec{v} = -2\hat{j} - 4\hat{k}$.

6. Expand and simplify $(3\vec{a} + \vec{b}) \cdot (6\vec{b} - 3\vec{a})$.

7. Expand $(2\hat{i} - 3\hat{k}) \cdot (\hat{i} + 4\hat{k})$.

8. \hat{u} and \hat{v} are unit vectors at 60° to each other, calculate $(5\hat{u} + \hat{v}) \cdot (\hat{u} - 2\hat{v})$.