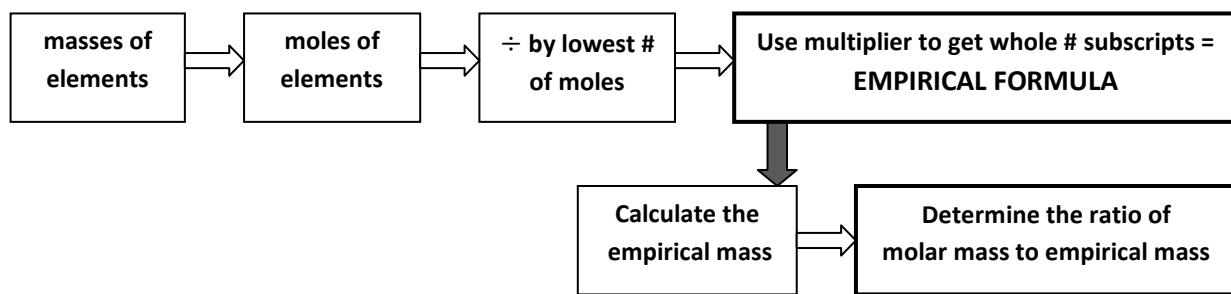

SCH 3U

EMPIRICAL & MOLECULAR FORMULAS

Determining the empirical formula of a compound (based on mass data) lies in the fact that moles of atoms always combine in the same ratio as the individual atoms themselves.

To determine the EMPIRICAL FORMULA of a compound:


EXAMPLES

① A 2.012 g sample of a compound between nitrogen and oxygen contains 0.5219 g of nitrogen. Calculate the empirical formula.

MULTIPLIERS	
when the decimal ends in...	multiply by...
0.5	2
0.33, 0.67	3
0.25, 0.75	4
0.2, 0.4, 0.6, 0.8	5
0.17	6

② A compound consists of 40.1% sulfur and 59.9% oxygen (by mass). What is its empirical formula? [Assume a 100-g sample]

To determine the **MOLECULAR FORMULA** of a compound:

If the **empirical formula** and **molar mass** of a compound are known, we can determine its molecular formula.

$$\text{MOLECULAR FORMULA} = \frac{\text{molar mass}}{\text{empirical mass}} \times (\text{empirical formula})$$

GIVEN: A compound has a molar mass of 56.12 g and its empirical formula is CH_2 .

$$\begin{array}{ll} \text{Empirical mass} = & 1 - \text{C} = 12.01 \text{ g} \\ & 2 - \text{H} = 2.02 \text{ g} \\ & \quad \quad \quad 14.03 \text{ g} \end{array} \quad \frac{\text{molar mass}}{\text{empirical mass}} = \frac{56.11 \text{ g}}{14.03 \text{ g}} = 4$$

$$\therefore \text{molecular formula} = 4 \times \text{CH}_2 = \text{C}_4\text{H}_8$$

EXAMPLES:

- ① If empirical formula of lactic acid is CH_2O and its molar mass is 90.09 g, what is the molecular formula of lactic acid?
- ② A compound consists of 43.7% P and 56.3% O. What is the molecular formula if its molar mass is 425.82 g?
- ③ A compound consists of 89.9% carbon and 10.1% hydrogen. What is the molecular formula if its molar mass is 160.28 g?
- ④ A compound contains 64.8% carbon, 13.6% hydrogen and 21.6% oxygen by mass. Find the molecular formula of the compound, given that its molar mass is 148.28 g/mol.