

## MHF 4U

### FACTORING POLYNOMIALS

#### REMAINDER THEOREM:

If the polynomial is divided by  $(x - a)$ , the remainder is  $f(a)$ .

$$P(\text{restriction}) = \text{remainder}$$

#### FACTOR THEOREM:

If  $P(a) = 0$ , then  $(x - a)$  is a factor of the polynomial.

#### EXAMPLES:

1. A) Determine the remainder when  $x^3 + 7x^2 + 2x - 5$  is divided by  $2x + 3$ .

B) Is  $2x + 3$  a factor of the polynomial in part A? Explain why or why not.

2. Factor  $f(x) = x^3 - 5x^2 - 2x + 24$ . Then sketch and describe its properties.

- To sketch the function, we need to express  $f(x)$  in factored form.
- In order to factor  $f(x)$ , we need to know what linear factor will be used to divide  $f(x)$ .
- The linear factor that is used should satisfy the Factor Theorem above.
- To determine the linear factor that satisfies the Factor Theorem, we choose values of  $x$  that are factors of the constant term. The value that satisfies the Factor Theorem leads to the linear factor used to begin the factoring process.

3. Sketch  $f(x) = 4x^4 + 6x^3 - 6x^2 - 4x$

4. Sketch and describe the properties of  $f(x) = x^4 - x^3 - 16x^2 + 4x + 48$ .

5. Sketch and describe the properties of  $f(x) = x^4 - 8x^2 + 16$ .