

MHF 4U

CHARACTERISTICS of POLYNOMIAL FUNCTIONS in FACTORED FORM

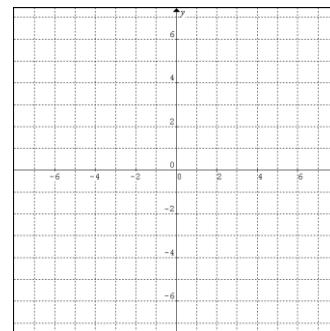
Consider the function $f(x) = x^3 - 2x^2 - 4x + 8$. Without sketching its graph, state its...

Degree	
Max # of turning points	
Max # of zeros	
Y-intercept	
End behaviour	

EXAMPLES: Consider the polynomial functions. State the indicated properties.

① $f(x) = (x - 3)(x + 2)$

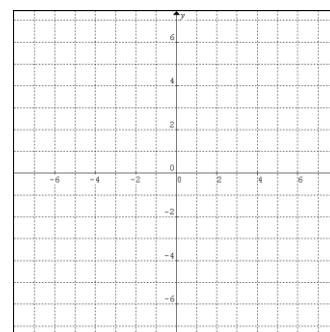
degree =
 number of turning points =
 y -intercept =
 zeros =
 end behaviour =



Comments:

② $f(x) = -(x - 2)^2$

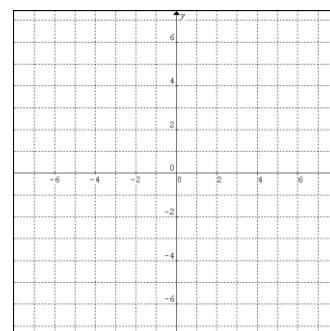
degree =
 number of turning points =
 y -intercept =
 zeros =
 end behaviour =



Comments:

③ $f(x) = x^2 + 1$

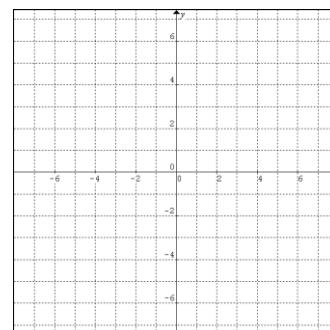
degree =
 number of turning points =
 y -intercept =
 zeros =
 end behaviour =



Comments:

④ $f(x) = -x^2 - 3x + 4$

degree =
 number of turning points =
 y -intercept =
 zeros =
 end behaviour =



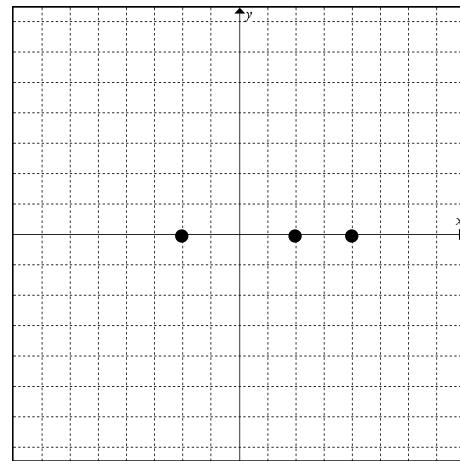
Comments:

Consider the function $f(x) = (x - 2)(x + 2)^2(x - 4)$.

The zeros (or x –intercepts) are located at $x = 2, -2, 4$, determined by solving the equation $f(x) = 0$.

The zeros of $f(x)$ are shown in the graph to the right.

Complete the curve of $f(x)$.



ANALYSIS TABLES

Using properties of the equation of $f(x)$, the shape of the graph can be determined as it curves through the zeros; that is, we can find if $f(x)$ approaches the first x –intercept from above or below the x –axis.

Analyze the **domain intervals surrounding the x –intercepts**.

① Prepare intervals of the domain separated by the zeros.

$$(-\infty, -2) \quad (-2, 2) \quad (2, 4) \quad (4, \infty)$$

② Choose test values within each interval. Use the test values in the factored form of $f(x)$. If the overall sign of $f(x)$ is positive, then the function is above the x -axis in that domain interval; if the sign of $f(x)$ is negative, then it is below the x -axis in that domain interval.

domain	$(-\infty, -2)$	$(-2, 2)$	$(2, 4)$	$(4, \infty)$
Test value	-3	0	3	5
$(x - 2)$ factor	-	-	+	+
$(x + 2)$ factor	+	+	+	+
$(x - 4)$ factor	-	-	-	+
Overall $f(x)$				

③ The ***overall signs of $f(x)$*** determined in step 2 allow us to sketch $f(x)$ passing through the zeros. Take note of any special features, such as a factor with an order of 2 or 3.