

MCR 3U

PART 1: GEOMETRIC SEQUENCES

Geometric sequences: sequences in which successive terms are determined by multiplying or dividing the same value.

Examples:

1. 6, 12, 24, 48, ...

3. 2, $\frac{2}{3}$, $\frac{2}{9}$, $\frac{2}{27}$, ...

2. 400, -200, 100, -50, ...

4. $2x$, $6x^2$, $18x^3$, ...

In any sequence,

t_1 = *first term*

t_2 = *second term*

...

t_n = *nth term or general term or general formula*

EXAMPLE 1: Given $t_n = 3 \left(\frac{1}{2}\right)^{n+2}$, find the first 3 terms.

EXAMPLE 2: Given $t_n = 2(1.2)^{n+1}$, find the fifth and twentieth terms.

In general, if the “multiplier” between terms is represented by the symbol “ r ” for *ratio*, the general formula for a geometric sequence is

$$t_n = t_1 r^{n-1}$$

where n = *number of terms or the position of a term*

r = *common ratio or multiplier*

PROOF:

The general geometric sequence is...

EXAMPLE 3: Given the sequence of terms $\frac{1}{4}, 2, 16, 128, \dots$ find the general formula. Find t_{10} .

EXAMPLE 4: How many terms are in the sequence $\frac{1}{2}, 2, 8, \dots, 8192$?

EXAMPLE 5: In a geometric sequence, the fifth term is 1536 and the ninth term is 24576. Find the first term and the common ratio. Then determine the general formula for the sequence.

PART 2: GEOMETRIC SERIES

2, 6, 18, 54, ... is called an Geometric Sequence, since it has a common ratio of $\frac{6}{2} = 3$.

A **GEOMETRIC SERIES** is the sum of the terms of a geometric sequence.

In the sequence above, $2 + 6 + 18 + 54 + \dots$ would represent the geometric series.

As in an Arithmetic Series, the symbol S_n represents the **SUM of the first n terms** of a geometric series. For the above series, $S_5 = 2 + 6 + 18 + 54 + 162 = 242$.

Using general symbols, the formula for S_n of a geometric series is developed.

$$\textcircled{1} \quad S_n = t_1 + (t_1r) + (t_1r^2) + (t_1r^3) + \dots + (t_1r^{n-2}) + (t_1r^{n-1})$$

$$\textcircled{2} \quad rS_n = t_1r + (t_1r^2) + (t_1r^3) + (t_1r^4) + \dots + (t_1r^{n-1}) + (t_1r^n)$$

$$\textcircled{1} - \textcircled{2} \quad S_n - rS_n = t_1 - t_1r^n$$

Factoring S_n : $S_n(1 - r) = t_1(1 - r^n)$

$$S_n = \frac{t_1(1 - r^n)}{1 - r}$$

OR

$$S_n = \frac{t_1(r^n - 1)}{r - 1}$$

EXAMPLE 1: Find S_{10} for the series defined by $t_n = 2^{n-1}$.

EXAMPLE 2: Find the sum of the series $59049 + 19683 + \dots + 9$.

EXAMPLE 3: Find the sum of the first 5 terms of the series $100 + 25 + 6.25 + \dots$

EXAMPLE 4: Gerry earned a salary of \$25 000 in his first year as an employee of WallyMart. Each year, his annual salary increases by 5% of the previous year. What is Gerry's overall earnings for his first 10 years working at WallyMart?