

MCV 4U

EQUATIONS OF A LINE IN \mathbb{R}^3

① VECTOR EQUATION:	$\overrightarrow{OP} = \overrightarrow{OP}_0 + t\vec{m}$ $\vec{r} = \vec{r}_0 + t\vec{m}$ $(x, y, z) = (x_o, y_o, z_o) + t(a, b, c)$
	(a, b, c) = direction numbers of the line typically written as integers.
② PARAMETRIC EQUATION:	$x = x_o + at$ $y = y_o + bt$ $z = z_o + ct$
③ SYMMETRIC EQUATION: $\frac{x-x_o}{a} = \frac{y-y_o}{b} = \frac{z-z_o}{c}$	
NOTE: If a component of the direction vector is 0, then that component is written separate from the symmetric equation. For instance, if $b = 0$, then the symmetric is written as $\frac{x-x_o}{a} = \frac{z-z_o}{c}; y = y_o$	

EXAMPLE ① Write the vector, parametric and symmetric equations for the line passing through $A(2, -2, -8)$ and $B(5, -2, -14)$

$$\vec{m} = \overrightarrow{AB} =$$

VECTOR:

PARAMETRIC:

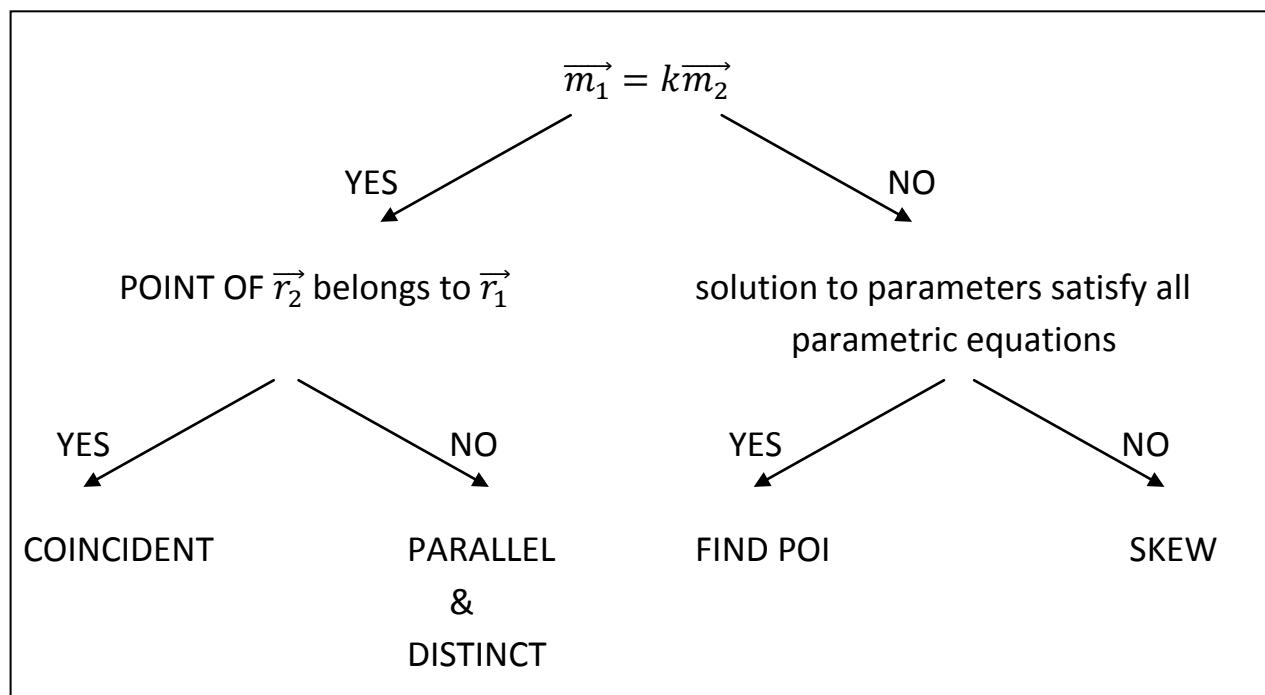
SYMMETRIC:

EXAMPLE ② Given $x - 4 = \frac{y+2}{3} = z$, write a vector equation for the line.

The NATURE of 2 LINES IN R^3 may be described as...

- ① **COINCIDENT:** same line, so infinite number of common points
- ② **PARALLEL & DISTINCT:** 2 separate lines; no point of intersection
- ③ **INTERSECT AT A POINT:** find the point of intersection
- ④ **SKEW:** lines that are not parallel and do not intersect
-- lie in different planes

In order to determine how 2 lines are related, use the flow-chart below:



EXAMPLE (3) Given \vec{r}_1 and \vec{r}_2 , determine the nature of the 2 lines.

$$\vec{r}_1: \frac{x-5}{2} = \frac{y+4}{-5} = \frac{z+1}{3}$$

$$\vec{r}_2: \frac{x+1}{-4} = \frac{y-11}{10} = \frac{z+4}{-6}$$

STEP 1: Check for parallel lines.

STEP 2: Check if a point of one line belongs to the other line. If "t" values are equivalent for all components, then the lines are _____.

EXAMPLE (4) $\vec{r}_1 = (-1, 1, 0) + t(3, 4, -2)$ and $\vec{r}_2 = (-1, 0, -7) + s(2, 3, 1)$

STEP 1: Check for parallel lines.

STEP 2: Equate the parametric equations of the first line with the parametric equations of the second line. If the parameters "t" and "s" satisfy all 3 equations, then the lines are _____.