

MCR 3U

DETERMINING MAX/MIN VALUES OF QUADRATIC FUNCTIONS

PART A: USING THE Y-INTERCEPT METHOD

Consider the quadratic function $f(x) = 2x^2 - 6x + 3$.

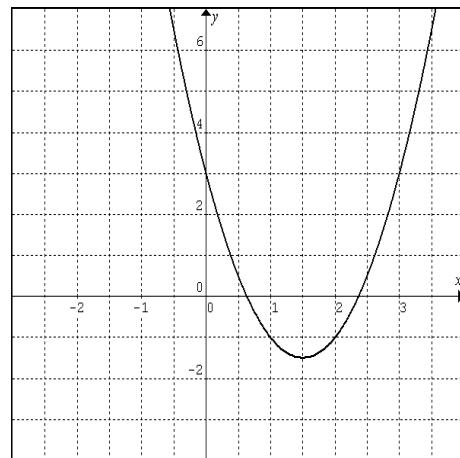
Its graph is shown to the right.

- A) Highlight the y-intercept. How does the y-intercept relate to the equation of the function?

- B) Identify another point on $f(x)$ that is symmetric with the y-intercept. State the coordinates of this point.

- C) How can we use the y-intercept and the point in part B to find the **axis of symmetry**? Find its location algebraically.

- D) How can you use the value of the axis of symmetry to find the vertex? Find its location algebraically. State the coordinates of this point, then state whether it is a **maximum or a minimum point**.



EXAMPLE 1: $f(x) = \frac{1}{2}x^2 - 2x - 4$

EXAMPLE 2: $f(x) = -\frac{2}{3}x^2 + x + 1$

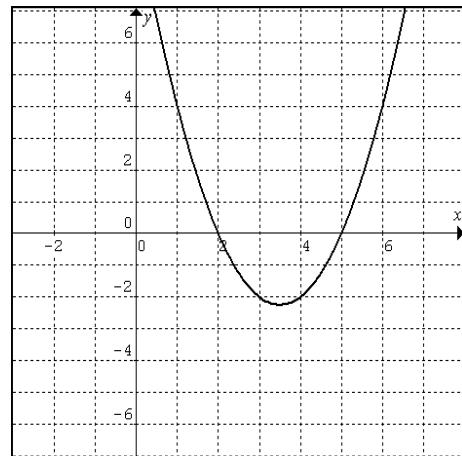
PART B: USING THE X-INTERCEPTS METHOD

Consider the quadratic function $f(x) = (x - 2)(x - 5)$.

Its graph is shown to the right.

A) Highlight the x-intercepts. How do the x-intercepts relate to the equation of the function?

B) How can you use the x-intercepts to find the ***axis of symmetry***? Find its location algebraically.



C) Find the vertex algebraically. State the coordinates of this point, then state whether it is a ***maximum or a minimum point***.

EXAMPLE 1: $f(x) = \frac{1}{2}x^2 - x - 4$

EXAMPLE 2: $f(x) = -\frac{2}{3}x^2 + \frac{1}{3}x + 2$

PART C: USING THE VERTEX METHOD

$$y = ax^2 + bx + c \xrightarrow{\text{Complete the square}} y = a(x - p)^2 + q$$

TO COMPLETE THE SQUARE

1. Order terms; group x terms together using [].

EXAMPLE:

$$y = 1 - 3x + 4x^2$$
$$y = [4x^2 - 3x] + 1$$

2. Factor "a" value from [].

$$y = 4 \left[x^2 - \frac{3}{4}x \right] + 1$$

3. Find missing value that "completes the square" with x terms. Add and subtract this value inside the [].

$$\left[\frac{1}{2} \left(-\frac{3}{4} \right) \right]^2 = \frac{9}{64}$$

$$y = 4 \left[\left(x^2 - \frac{3}{4}x + \frac{9}{64} \right) - \frac{9}{64} \right] + 1$$

4. Rewrite the trinomial into its perfect square binomial.

$$y = 4 \left[\left(x - \frac{3}{8} \right)^2 - \frac{9}{64} \right] + 1$$

5. Expand the "a" value through [].

$$y = 4 \left(x - \frac{3}{8} \right)^2 - \frac{9}{16} + 1$$

6. Collect like terms together. [ie. the constants]

$$y = 4 \left(x - \frac{3}{8} \right)^2 + \frac{7}{16}$$

7. Statement – min/max value.

Minimum of $\frac{7}{16}$ at $x = \frac{3}{8}$.

EXERCISE: Determine the minimum or maximum value of each quadratic relation using two of the three methods for each equation.

1. $f(x) = x^2 + 5x - 1$

2. $f(x) = -x^2 - 7x$

3. $f(x) = 2x^2 + 6x - 1$

4. $f(x) = -5x^2 + 10x + 5$

5. $f(x) = \frac{1}{2}x^2 - 2x + 1$

6. $f(x) = \frac{2}{3}x^2 - 2x + 5$

7. $f(x) = -6x^2 - 2x + 2$

8. $f(x) = 10x^2 - 4.2x + 1.8$

9. $f(x) = 3 - 2x + 3x^2$

10. $f(x) = -0.06x^2 - 6x + 1$

ANSWERS: In no particular order,

Max of 49/4 at $x=-7/2$

Min of -11/2 at $x=-3/2$

Min of -29/4 at $x=-5/2$

Min of 8/3 at $x=1/3$

Max of 13/6 at $x=1/3$

Min of 1.359 at $x=0.21$

Max of 151 at $x=-50$

Min of -1 at $x=2$

Min of 7/2 at $x=3/2$

Max of 10 at $x=1$