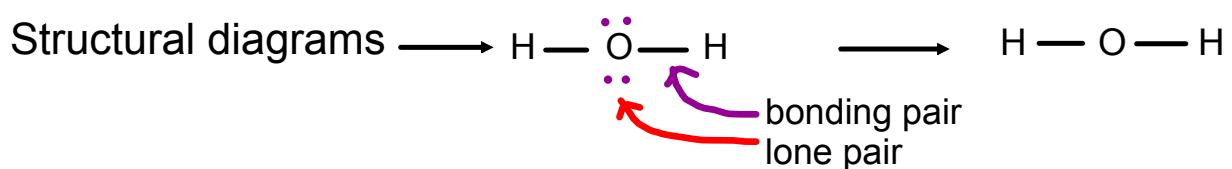
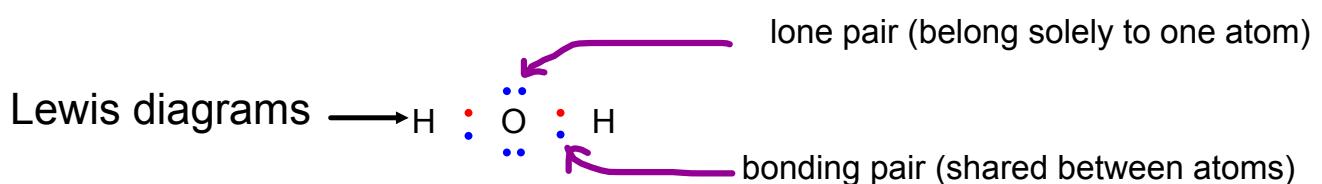


POLAR COVALENT BONDS & POLAR MOLECULES

Eg. H Cl

Eg. H C

Eg. Fe F

Molecular Models

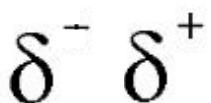
MOLECULAR SHAPES & BOND ANGLES

(for covalent molecules with a central atom)

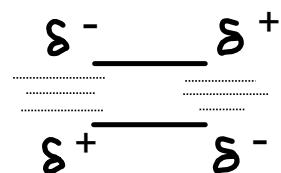
For each molecule,

- draw the 2-dimensional structural diagram.
- redraw the molecule as a 3-dimensional structure.
- name the shape and indicate the bond angles.

1. CH_4


2. NH_3

3. H_2O


4. CO_2

5. CSFH

Non-Polar bonds	Polar bonds
$\Delta EN < 0.4$	$\Delta EN > 0.4$
C - H	O - N
N - Cl	N - H
O - Cl	O - C
	Cl - C

Polar molecules tend to stick to each other due to **intermolecular forces** (ie. attraction between molecules) and the **dipoles** that are present.

Therefore, more NRG needed to break attractions

- this leads to higher mp and bp.

POLAR VS NON-POLAR MOLECULES

A molecule with **POLAR bonds** does **not** necessarily lead to a **POLAR molecule**!

<i>Polar Bonds</i>	<i>Non Polar Bonds</i>
1. H_2O	2. OCl_2
3. CO_2	4. C_2H_4
5. NH_3	6. NCl_3
7. CCl_4	8. CH_4
9. CH_2Cl_2	10. C_3H_6