

THE RATE LAW -- relationship between rate of reaction & concentrations of reactants

CHEMICAL EQUATION

RATE OF REACTION based on **INITIAL RATE METHOD**:

- Rate proportion statement: **rate $\propto [A]^m[B]^n$**
where m & n are calculated by experiment.
- **RATE LAW EQUATION:** **rate = $k[A]^m[B]^n$**

Eg. Given rate = $k[A]^1[B]^2$

-- **ORDER OF REACTION** -- based on exponents

- 1st order with respect to **A**
- 2nd order with respect to **B**
- 3rd order **overall** ($m + n = 1 + 2$)

The RATE CONSTANT -- **k**

- **k** shows speed of reaction
- if **k** is small, reaction is slow; if **k** is large, reaction is fast
- as reaction proceeds, rate slows down, but **k** stays constant
- **k** only different if **temperature changes**; therefore, must always state **T** with **k**.

HOW TO DETERMINE EXPONENT VALUES & CONSTANT

-- based on experiment

-- Initial Rates Method

-- compare initial rates of various reactant concentrations

Given Table:

experiment	initial [A] (mol/L)	initial rate (mol/Ls)
1	0.3	15
2	0.6	30
3	0.9	45

TO FIND m:

$$\text{Use 2 of the trials: } \frac{\text{rate}_2}{\text{rate}_1} = \frac{k[0.6]^m}{k[0.3]^m} = \frac{30}{15}$$

$$(2)^m = 2$$

Therefore, $m = 1$ -- first order

$$\text{rate} = k[A]^1$$

TO FIND k:

Use any of the given trials from the table, substitute the rate and []:

$$\text{rate} = k[A]^1$$

$$15 \text{ mol/Ls} = k(0.3 \text{ mol/L})$$

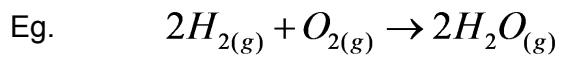
$$k = \frac{15 \text{ mol/Ls}}{0.3 \text{ mol/L}}$$

$$k = 50 \text{ s}^{-1}$$

$$\text{rate} = 50 \text{ s}^{-1} [A]^1$$

Eg.

experiment	initial [A] (mol/L)	initial rate (mol/Ls)
1	0.3	15
2	0.6	60
3	0.9	135


Consider the reaction: $2 A + 4 B \longrightarrow 5 C + 3 D$

experiment	initial [A] (mol/L)	initial [B] (mol/L)	initial rate (mol/Ls)
1	0.3	0.2	0.6
2	0.3	0.4	4.8
3	0.6	0.4	4.8

$$\text{rate} = k [A]^m[B]^n$$

[B] -- keep [A] same --

[A] -- keep [B] same --

trial	$[H_2]$ (mol/L)	$[O_2]$ (mol/L)	initial rate of H_2O produced (mol/L min)
1	0.020	0.020	0.0036
2	0.040	0.020	0.0144
3	0.020	0.040	0.0073

rate =