

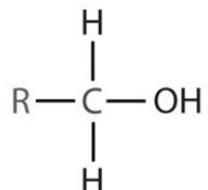
SCH 4U

SINGLE BONDED FUNCTIONAL GROUPS

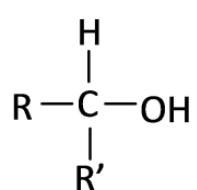
FUNCTIONAL GROUP	NAME
R – OH attachment of –OH may be classified as primary (1°), secondary (2°), or tertiary (3°)	Alcohol
R – X (where X = F, Cl, Br, I)	Alkyl halide (haloalkane)
	Ether
R – NH₂ primary – 1° or R – NHR' secondary – 2° or R – NR'R'' tertiary – 3°	Amines

Molecules with the same functional groups ...

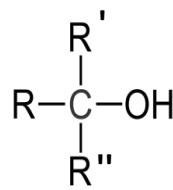
- react the same way -- similar chemical properties
- have similar physical properties (bp, mp, solubility)
- determined by intermolecular forces (between molecules)


decreasing strength

1. hydrogen bonds – (N – H, O – H, F – H)
2. dipole-dipole interactions (between polar molecules)
3. dispersion forces (between non polar molecules)
-- increases as size of molecule increases


Molecules with both polar and non polar parts...

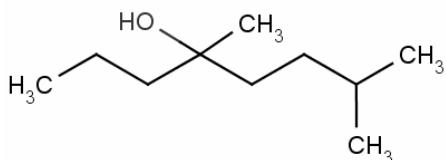
- longer non polar part, less polar
- greater the polarity, the higher the mp/bp; increased solubility


① ALCOHOLS:

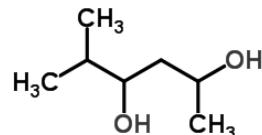
1°

2°

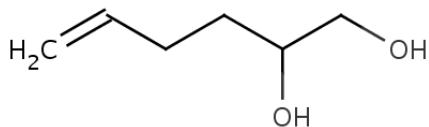
3°


IUPAC NAMING:

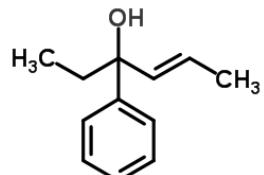
- longest carbon chain with $-\text{OH}$.
- change $-\text{e}$ ending of alkane with $-\text{ol}$
EG. methane becomes methanol.
OR if there are more than 1 hydroxyl group, leave $-\text{e}$ ending and name as alkanediol, or alkanetriol, etc.
- add position number (if 2°) in front for C with $-\text{OH}$.
- name and number substituents as prefixes.

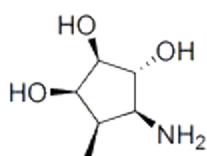

NOTE: Alcohol numbering takes priority over alkene numbering: thus, an alkenol.

EXAMPLES: Name each compound.


1.

2.


3.

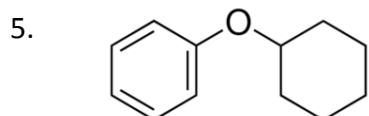
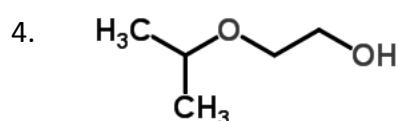
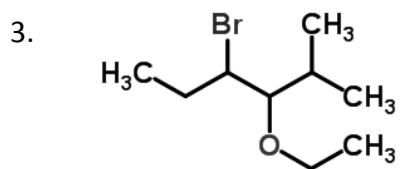
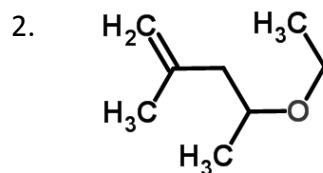
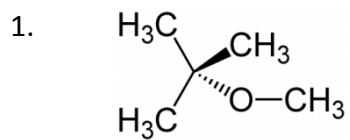

4.

5.

6.

(2) ETHERS:

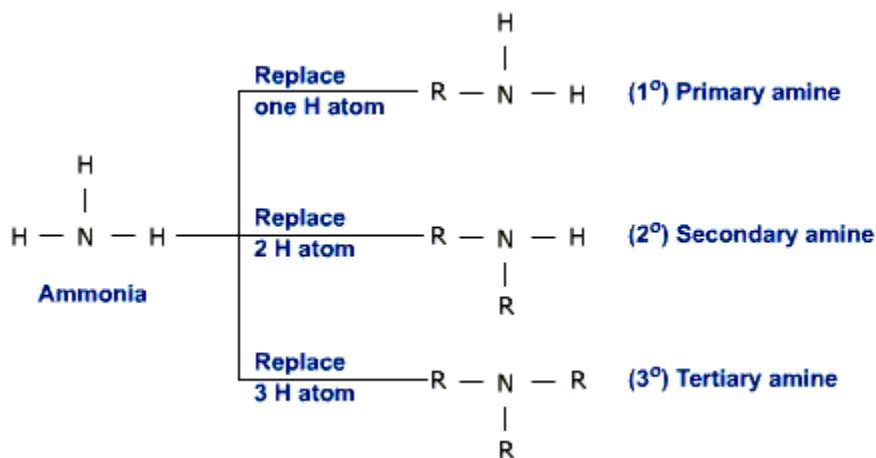
- 2 alkyl groups joined by $-\text{O}-$
- $\text{R}-\text{O}-\text{R}'$






IUPAC NAMING:

1. longest carbon chain
2. name and number substituent alkoxy group(s)

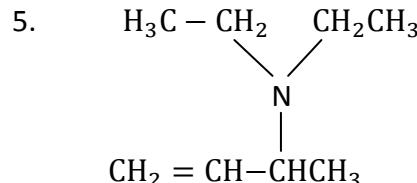
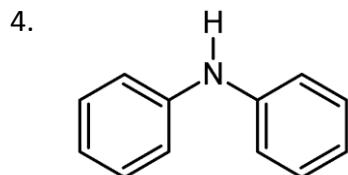
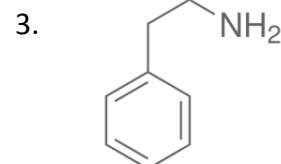
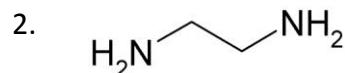
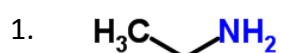
COMMON NAMING:

Alkyl groups + ether (all separate) \rightarrow no numbering


EXAMPLES: Name each compound.

PROPERTIES:

1. Polarity $<$ alcohols, since $\text{C}-\text{O}$ is a less polar bond than $\text{O}-\text{H}$.
2. No hydrogen bonds themselves, but with δ^+_{H} of H_2O .
3. Solubility decreases as # of C's increases.
4. Mp/Bp of ethers is less than alcohols with same # of C's.






③ AMINES:

IUPAC NAMING:

1. longest carbon chain attached to N
 - Change – e to – amine, and include position # of carbon attached to N.
2. other shorter alkyl groups → No position #, but use N – or N,N – di

EXAMPLES: Name each compound.

PROPERTIES:

1. $\text{C} - \text{N}$ & $\text{N} - \text{H}$ are polar bonds, but not as polar as $-\text{OH}$ bonds.

$$\frac{\delta^+}{\delta^-} \quad \frac{\delta^-}{\delta^+}$$
2. N – H forms H bonds.
3. since polar, if # of C's ≤ 4 , dissolves in water. As # C's increases, solubility decreases.
4. Mp/Bp: 1° (primary) and 2° amines are greater than 3° (since it has no N – H bonds)
5. – fishy smell due to decay, decomposition
 – very weak bases