
SCH 3U

STRONG VS. WEAK ACIDS/BASES

PART A: STRENGTH OF ACIDS

DILUTE (little solute & MUCH WATER)	versus	CONCENTRATED (MUCH SOLUTE & little water)
Eg. 0.000 001 mol/L		Eg. 1.0 mol/L
WEAK ACID (small % dissociation into ions)		STRONG ACID (100% DISSOCIATION into ions)
Eg. $HCH_3COO_{(aq)} + H_2O_{(l)} \rightleftharpoons H_3O_{(aq)}^+ + CH_3COO_{(aq)}^-$ Only 1% of $HCH_3COO_{(aq)}$ dissociate.		Eg. $HCl_{(aq)} + H_2O_{(l)} \rightarrow H_3O_{(aq)}^+ + Cl_{(aq)}^-$ All HCl molecules dissociate.

It is important to note that the words **strong** and **weak** should not be confused with the terms **concentrated** and **dilute**. The strength of an acid is related to the proportion of it which has reacted with water to produce ions. The concentration indicates how much of the original acid is mixed in the solution. It is perfectly possible to have a concentrated solution of a weak acid, or a dilute solution of a strong acid.

	BINARY ACIDS	OXO ACIDS
WEAK ACIDS	HF	If (#O's - #H's) < 2 H_3PO_4 H_2CO_3 All organic acids, such as acetic acid, CH_3COOH
STRONG ACIDS	HCl HBr HI	If (#O's - #H's) ≥ 2 H_2SO_4 HNO_3 $HClO_4$

POLYPROTIC ACIDS — monoprotic, diprotic, triprotic

- Acids that have the ability to lose more than one H^+
- Only the first H^+ lost can be strong
- All subsequent dissociated hydrogens will always be weak (regardless of #O's - #H's) – WHY? – hard to remove H^+ ion from negative ion

Eg. H_2SO_4 can lose 2 H^+ (diprotic) $H_2SO_{4(aq)} + H_2O_{(l)} \rightarrow H_3O_{(aq)}^+ + HSO_{4(aq)}^-$

Eg. H_3PO_4 can lose 3 H^+ (triprotic)

PART B: STRENGTH OF BASES

	IA – hydroxides & oxides	IIA – hydroxides & oxides	Nitrogens
WEAK BASES	None	Be (small ion)	All eg. NH_3
STRONG BASES	All	All, except Be	

Eg. Illustrate the dissociation of each base in water.

PART C: NAMING ACIDS

① BINARY ACIDS: (H + NM)

FIRST WORD	SECOND WORD
hydro ic <i>non-metal root</i>	acid

EXAMPLES: Name each acid.

1. HCl 2. HBr 3. HI

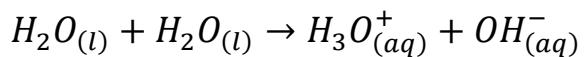
4. HF 5. H₂S

② OXOACIDS: (H + polyatomic)

POLYATOMIC ION that ends in...	CHANGE TO...	EXAMPLE
-ate	-ic acid	H ₂ CO ₃ contains CO ₃ ⁻² carbon ate ion → carbonic acid
-ite	-ous acid	HNO ₂ contains NO ₂ ⁻ nit rite ion → nitrous acid
exceptions: Roots of S and P oxoacids are... sulfur- and phosphor-		H ₃ PO ₄ – contains PO ₄ ⁻³ – based on rules, phosphate → phosphic acid ACTUAL NAME → phosphoric acid

NOTE: hypo- and per- remain in name of acid if it is part of the polyatomic ion.

Eg. HClO₄ contains ClO₄⁻, **perchlorate** → **perchloric acid**


EXAMPLES: Name each acid.

1. HClO₂ 2. HBrO₃ 3. H₂SO₄

4. HNO₃ 5. H₂SO₃ 6. HIO₄

7. HCN 8. HCNO

PART D: pH

2 ppm molecules undergo this reaction.

NEUTRAL SOLUTIONS: distilled water is a poor conductor of electricity.

At 25°C, $[H_3O^+] = 1.0 \times 10^{-7} \text{ mol/L}$ and $[OH^-] = 1.0 \times 10^{-7} \text{ mol/L}$

ACIDS	BASES
$[H_3O^+] > [OH^-]$	$[H_3O^+] < [OH^-]$

$$pH = -\log [H_3O^+]$$

$$pOH = -\log [OH^-]$$

$$pH + pOH = 14$$

$$[H_3O^+] = 10^{-pH}$$

$$[OH^-] = 10^{-pOH}$$

$$[H_3O^+][OH^-] = 10^{-14}$$

EXAMPLES:

1. What is the pH of a 3.51×10^{-3} mol/L solution of $\text{HNO}_{3(\text{aq})}$?
2. What is the pH of a 7.48×10^{-6} mol/L solution of $\text{NaOH}_{(\text{aq})}$?
3. What is the pH of a 4.74×10^{-5} mol/L solution of $\text{Mg(OH)}_{2(\text{aq})}$?
4. What is the $[H_3O^+]$ of a solution with pH 2.57?
5. What is the $[OH^-]$ of the same solution with pH 2.57?
6. A solution of Ba(OH)_2 has a pH of 10.7. What is the $[\text{Ba(OH)}_2]$?
7. What is the pH of a 1.0 mol/L solution of $\text{HCl}_{(\text{aq})}$?
8. Most acids are bought as 16.0 mol/L solutions. What is the pH?
9. A 1.00 L solution of hydrochloric acid consisting of 4.00 g of solute is mixed with 0.50 L of 0.20 M sodium hydroxide solution. What is the final pH of the mixture?