

MCR 3U

PART 1: TRANSFORMATIONS OF EXPONENTIAL FUNCTIONS

Parent form of an exponential function $\rightarrow y = A^x$, where $A > 0$ and $A \neq 1$.

The family of exponential functions undergo transformations similar to those found with other functions, such as $y = x^2$, $y = x^3$, $y = \sqrt{x}$, and $y = |x|$.

Compare the first 2 columns of the chart below. Describe the transformation that is applied to the parent function.

Parent	Transformed Function	Transformation?
$y = 2^x$	$f(x) = 3(2)^{x-1}$	
$y = 10^x$	$n(x) = -10^x$	
$y = 3^x$	$g(x) = 9^x - 3$	
$y = 1.03^n$	$A(n) = 100(1.03)^n$	
$y = \left(\frac{1}{2}\right)^x$	$h(x) = \left(\frac{1}{2}\right)^x + 2$	

The general form of a transformed exponential function is...

$$y = A^x \quad \xrightarrow{\text{parent}} \quad f(x) = a(A)^{k(x-h)} + v \quad \xrightarrow{\text{transformed function}}$$

where

A = base of the parent exponential function

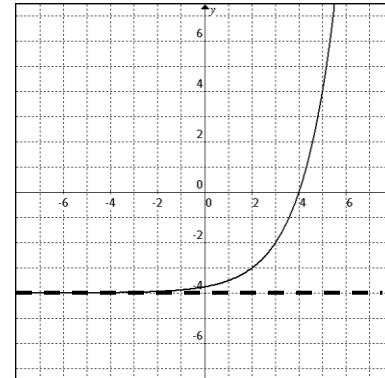
a = vertical expansion/compression/reflection in x – axis

v = vertical shift

k = horizontal expansion/compression/reflection in y –axis

h = horizontal shift

EXERCISE:


① For each exponential function,

- Use exponent rules to simplify the equation.
- Highlight the parent graph and state its equation
- Describe the transformation to the parent function and write the mapping.
- State the location of the horizontal asymptote.
- Complete a table using $x = -1, 0, 1$. Sketch the transformed function.
- Describe domain and range.

EXAMPLE: $f(x) = 8(2)^{x-5} - 4$

- $f(x) = 2^3(2)^{x-5} - 4$
 $f(x) = (2)^{x-2} - 4$
- PARENT: $y = 2^x$
- TRANSFORMATION: shift right 2 and down 4
- Horizontal Asymptote: $y = -4$
- TABLE:

x	$y = 2^x$	$(x + 2, y - 4)$
-1	0.5	(1, -3.5)
0	1	(2, -3)
1	2	(3, -2)

$$D = \{x \in R\}; R = \{y \in R, y > -4\}$$

A) $f(x) = 4(2^x) - 2$ B) $f(x) = 9(3^{x+3})$ C) $f(x) = \frac{1}{8} \left(\frac{1}{2}\right)^x + 1$

D) $f(x) = \frac{1}{8}(2)^{x+1}$ E) $y = -3(3)^{x+2} + 1$ F) $f(x) = \frac{1}{16}(2)^{-x-3}$

G) $y = 3 \left(\frac{1}{2}\right)^{x-3} + 3$ H) $y = 2 \left(\frac{1}{5}\right)^{x-2} - 25$ I) $f(x) = -2 \left(\frac{1}{3}\right)^x - 2$

J) $y = 3(2)^x - 3$ K) $y = -(3)^{x+1} - 2$ L) $y = -\frac{1}{2} \left(\frac{1}{2}\right)^{x+2} + 2$

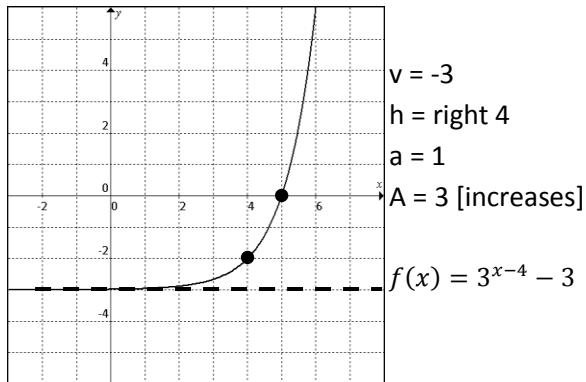
② For each function in #1 A-F, evaluate $f(-1)$, $f(0)$, $f(2)$, and $f(x) = 0$.

PART 2: DETERMINING the EQUATION of the EXPONENTIAL FUNCTION

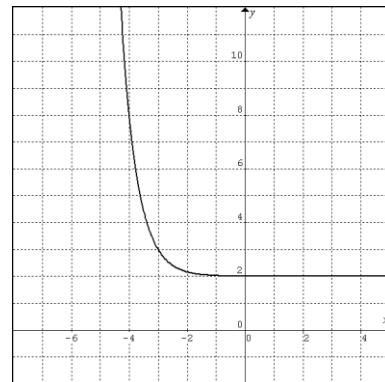
Consider any PARENT Exponential Function:

2 key points of the parent include → (0, 1) & (1, A)

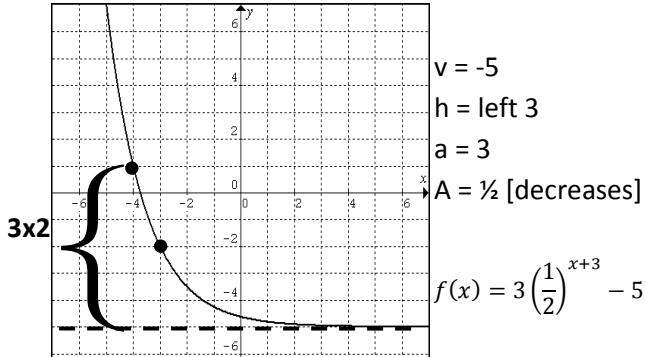
If we locate the images of these 2 parent points, we can determine the equation in the form $f(x) = a(A)^{(x-h)} + v$.

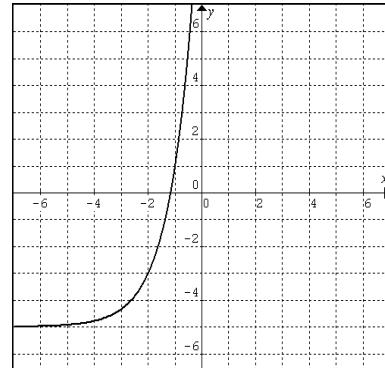

STEP ① Sketch the horizontal asymptote → value of v .

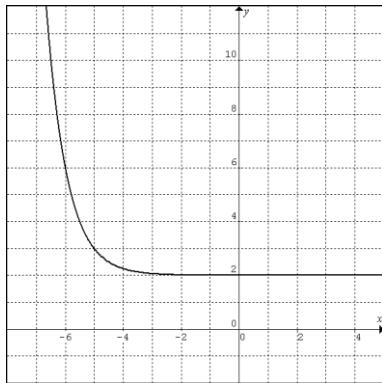
STEP ② Locate 2 points (with integer coordinates) nearest the HA.

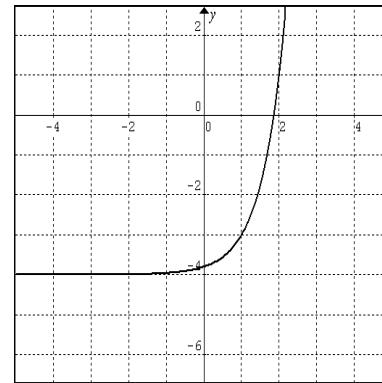

- Point closest to HA provides horizontal shift (h) from (0, 1) AND any vertical expansion (a) counting from HA.
- 2nd point determines base (A) – count from HA to this point, however, we also need to account for any vertical expansion.
- INCREASING function → "A" = whole number.
DECREASING function → "A" = reciprocal of the whole number.

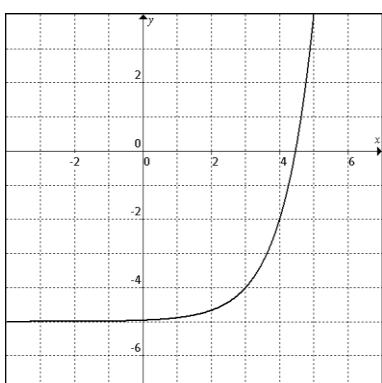
Determine the equation of each exponential function in the form $y = a(A)^{(x-h)} + v$.

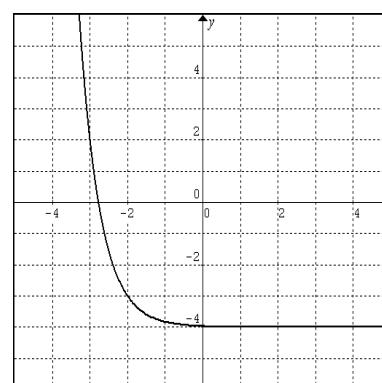

1.

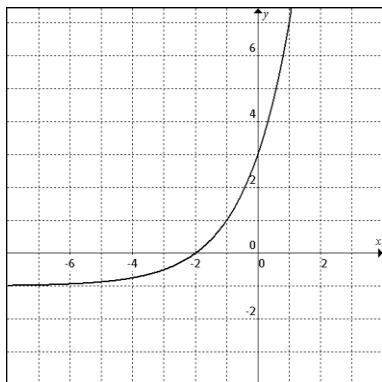

2.

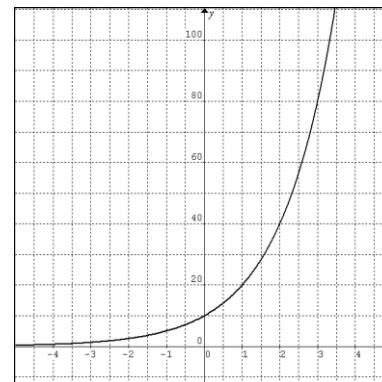

3.

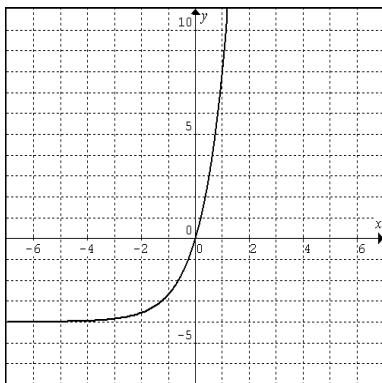

4.

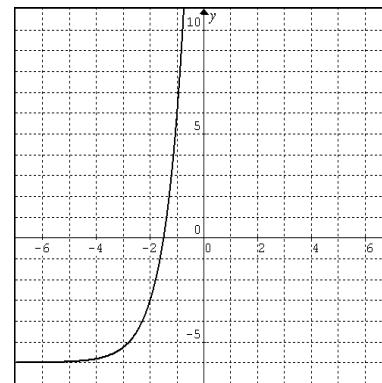

5.


6.

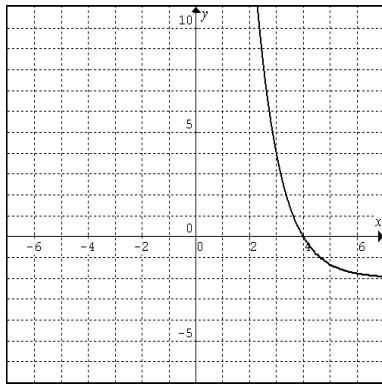

7.


8.

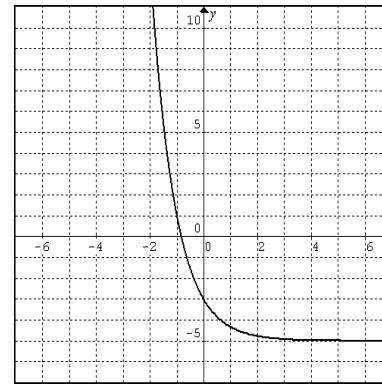

9.


10.

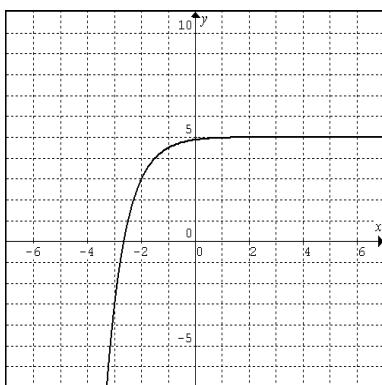
11.

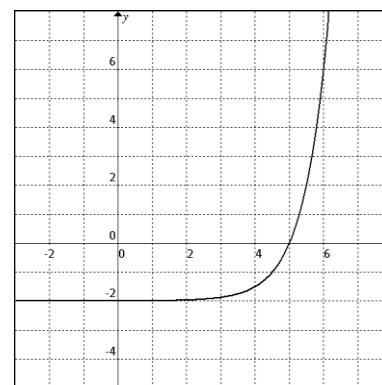


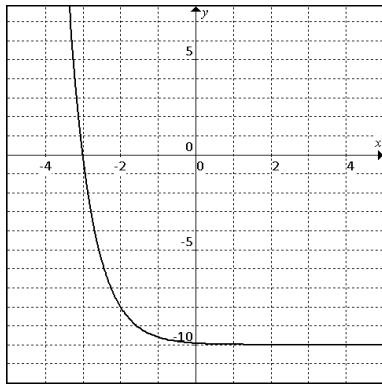
12.

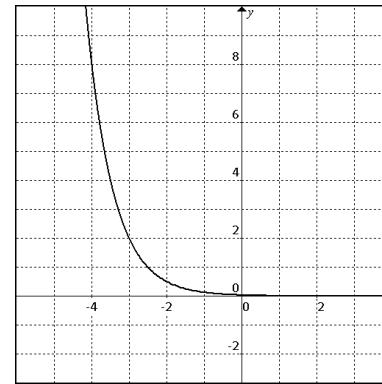


Express in the form $y = a(A)^x$.


13.


14.


15.


16.

17.

18.

ANSWERS: (in no particular order)

$$Y=3^{(x-4)-3}$$

$$Y=-2(1/4)^{(x+2)+5}$$

$$Y=3(1/2)^{(x+3)-5}$$

$$Y=2(1/3)^{x-5}$$

$$Y=(1/6)^{(x+3)+2}$$

$$Y=2^{(x+2)-1}$$

$$Y=(1/4)^{(x+5)+2}$$

$$Y=(1/6)^{(x+2)-4}$$

$$Y=4(3)^{x-4}$$

$$Y=2(1/5)^{(x+2)-10}$$

$$Y=2(1/3)^{(x-4)-2}$$

$$Y=2(4)^{(x-5)-2}$$

$$Y=2(1/4)^{(x+3)} \quad Y=3^{(x-3)-5}$$

$$Y=10(2)^{x}$$

$$Y=2(3)^{(x+2)-5}$$

$$Y=3(4)^{x-6}$$

$$Y=5^{(x-1)-4} \quad Y=3(4)^{(x+2)-6}$$