

MCR 3U

TRIGONOMETRIC IDENTITIES

The purpose and focus of trig identities are to prove LS = RS of a given equation. **FORMULAS** and **ALGEBRAIC SKILLS** are used to write trig expressions in other forms, and in many cases, simpler forms. As a result, this section serves the purpose of developing logical and critical thinking skills.

FAMILIAR FORMULAS:

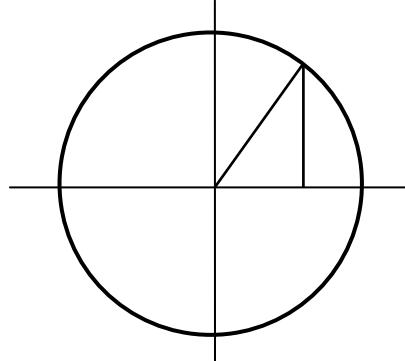
$$\textcircled{1} \quad \csc \theta = \frac{1}{\sin \theta}$$

$$\textcircled{2} \quad \sec \theta = \frac{1}{\cos \theta}$$

NEW TRIGONOMETRIC FORMULAS:

③ Consider the diagram to the right in which a terminal arm has rotated a full 360° . The image of the endpoint of the terminal arm is a circle. If we look at one of the positions of the terminal arm within that circle and label the sides of a right triangle formed with the x -axis, a relationship between trigonometric ratios is formed.

Referring to the right triangle:


horizontal segment $= x$

vertical segment $= y$

radius of the circle $= r$

reference angle $= \theta$

Using the Pythagorean Theorem, $x^2 + y^2 = r^2$.

Dividing each term by r^2 , we get $\frac{x^2}{r^2} + \frac{y^2}{r^2} = 1$

which can be rewritten as

$$\left(\frac{x}{r}\right)^2 + \left(\frac{y}{r}\right)^2 = 1$$

and since $\cos \theta = \frac{x}{r}$ and $\sin \theta = \frac{y}{r}$, $(\cos \theta)^2 + (\sin \theta)^2 = 1$

which can be simplified to

$$\cos^2 \theta + \sin^2 \theta = 1 \quad \text{③A}$$

2 other forms of ③A include

$$\cos^2 \theta = 1 - \sin^2 \theta \quad \text{③B}$$

$$\sin^2 \theta = 1 - \cos^2 \theta \quad \text{③C}$$

NOTE: Formula 3A says $\cos^2 x + \sin^2 x = 1$, but $\cos x + \sin x \neq 1$

$$\textcircled{4} \quad \tan \theta = \frac{y/r}{x/r} = \frac{y}{x} = \frac{\sin \theta}{\cos \theta}$$

$$\textcircled{5} \quad \cot \theta = \frac{\cos \theta}{\sin \theta}$$

USEFUL ALGEBRAIC SKILLS

- \times fractions $\rightarrow \frac{a}{b} \times \frac{b}{c} = \frac{a}{c}$
- \div fractions $\rightarrow \frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$
- + or - fractions: $\frac{a}{b} + \frac{b}{c} = \frac{ac+bc^2}{bc}$

- Factoring
- Expanding
- Substituting using formulas ①-⑤ on front page.

OTHER USEFUL EXPRESSIONS:

1. $\sin^2 x = (\sin x)^2$

2. $\tan^2 x = \frac{\sin^2 x}{\cos^2 x}$

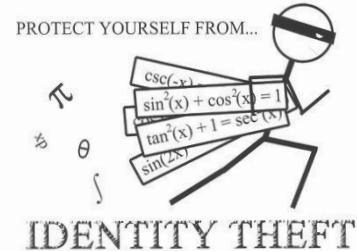
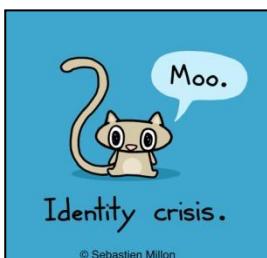
3. $\sec^2 x = \frac{1}{\cos^2 x}$

4. Rewrite $\frac{\cos x}{\frac{\sin x}{\sin x + \cos x}}$ as $\frac{\cos x}{\sin x} \div \frac{\sin x + \cos x}{\sin x}$ 5. $\sin^2 x - \sin x \cos x = \sin x (\sin x - \cos x)$

EXAMPLES:

1. Simplify the trigonometric expression $\sin x \tan x \cos x$. Evaluate both original and simplified expressions at $x = 25^\circ$ to prove LS = RS.

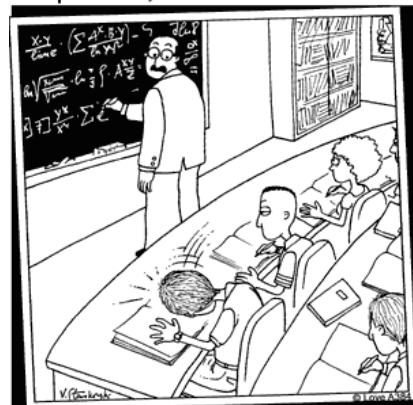
2. For $\tan \theta + \cot \theta \equiv \sec \theta \csc \theta$,



A) Use $\theta = 60^\circ$ to prove the identity is true.

B) Prove the identity.

3. Prove the identity $(\sin x + \cos x)^2 \equiv 1 + 2 \sin x \cos x$

4. Prove the identity $\frac{1}{1+\cos A} + \frac{1}{1-\cos A} \equiv 2 \csc^2 A$


5. Prove or disprove the identity $\frac{1-\cot^2 B}{\cos B + \sin B} \equiv \csc B - \frac{\cot B}{\sin B}$

created by: David Ritzenthaler

3.14.2013

Snapshots at jasonlove.com

Professor Herman stopped when he heard that unmistakable thud – another brain had imploded.

EXERCISE: Prove each trigonometric identity.

1. $\sin x \tan x \equiv \frac{\cos x}{\cot^2 x}$

2. $\csc x \sec x \cot x \equiv \csc^2 x$

3. $(\sin x + \cos x)^2 \equiv 1 + 2 \sin x \cos x$

4. $(1 + \tan x)^2 \equiv \sec^2 x + 2 \tan x$

5. $\cos x (\sec x - \cos x) \equiv \sin^2 x$

6. $\sin^3 x + \sin x \cos^2 x \equiv \frac{\tan x}{\sec x}$

7. $\cot x + \tan x \equiv \csc x \sec x$

8. $\cos x + \frac{\sin^2 x}{\cos x} \equiv \sec x$

9. $1 + \frac{1}{\sin x} \equiv (1 + \sin x) \csc x$

10. $\frac{1}{\sin x} - \sin x \equiv \cot x \cos x$

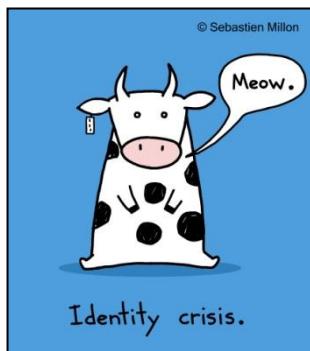
11. $\tan^2 x (1 + \cot^2 x) \equiv \frac{1}{1 - \sin^2 x}$

12. $\csc x (\cos x + \sin x) \equiv \cot x + 1$

13. $\sec^2 x - \tan^2 x \equiv 1$

14. $\sin x + \frac{\cot x}{\sec x} \equiv \csc x$

15. $1 - \cos^4 x \equiv 2 \sin^2 x - \sin^4 x$


16. $\frac{\cot x + \cos x}{1 + \sin x} \equiv \cot x$

17. $\tan x - \cot x \equiv \frac{1 - 2 \cos^2 x}{\sin x \cos x}$

18. $\frac{1 - \cos^2 x}{\cos x} \cdot \csc x \equiv \tan x$

19. $2 \csc x \equiv \frac{\sin x}{1 + \cos x} + \frac{\sin x}{1 - \cos x}$

20. $\cos x + \sin x \equiv \frac{\sec x + \csc x}{\cot x + \tan x}$

"Surely you can tell me your secret identity."