

TYPES of BONDING

IONIC vs COVALENT vs METALLIC BONDING

- octet rule
 - atoms want same number of electrons as the noble gases (filled or empty valence shell)
 - 2 particles with the same number of electrons are *isoelectronic*

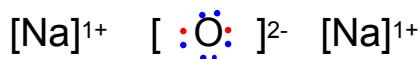
Eg. Ar atom has 18 e⁻ Cl atom has 17 e⁻
Cl¹⁻ ion has 18 e⁻

Therefore, Ar and Cl^1- are isoelectronic.

1. IONIC BONDING

- transfer of electron(s) from metal atom to non-metal atom.

Eg. Lithium & Chlorine



Lewis diagram $[\text{Li}]^+$ $[\text{Cl}]^-$

Chemical Formula Li Cl

Name lithium chloride

Eg. Sodium & Oxygen

sodium oxide

Eg. Magnesium & Sulfur

Eg. Calcium & Nitrogen

Eg. Potassium & Phosphorus

2. COVALENT BONDING

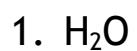
- between non-metal atoms
- both atoms prefer to gain electrons for stable octet, therefore they must share

Eg.

Chlorine & Chlorine

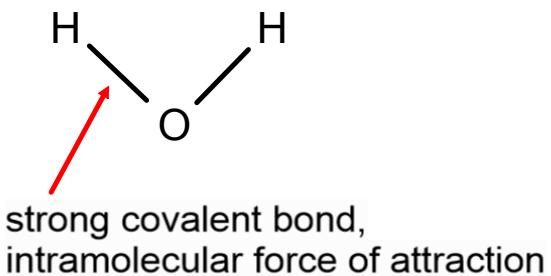
Lewis diagram: Cl Cl single bond - share 1 pair of electrons

Structural diagram: Cl Cl

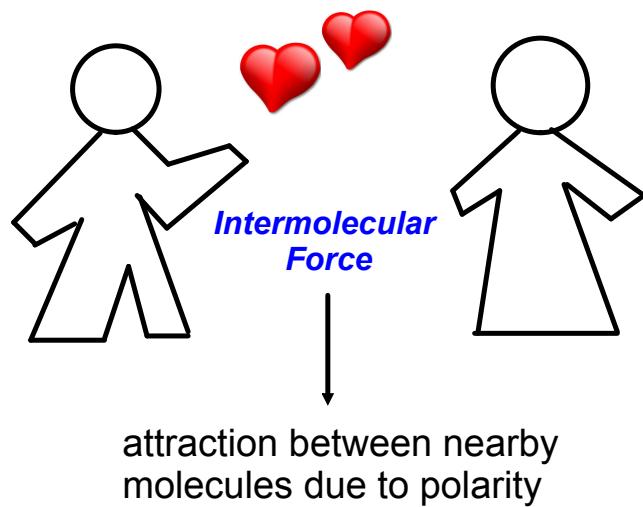

- 2 atoms of the same element --- ***Diatom***

EXERCISE: Sketch the molecule formed by each pair of atoms.

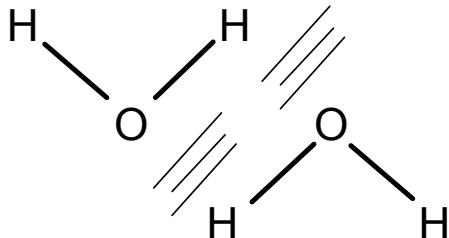
1. Oxygen & Oxygen


2. Nitrogen & Nitrogen

EXERCISE: Sketch each molecule.

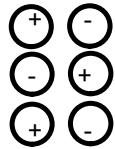


Intramolecular Forces of Attraction


- attraction between atoms of same molecule
- covalent bonds are strong

Intermolecular Forces of Attraction

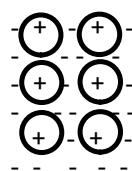
Eg.



- all covalent compounds have low mp/bp compared to ionic compounds
- intermolecular forces are weak
- covalent compounds do not form ions when dissolved in water
- remain neutral, therefore do not conduct electricity

3. METALLIC BONDING

- pure metals & alloys (solid solutions of different metals)
- in metallic bonding, electrons are loosely held and form a shared "pool or sea of negative electrons" between positive nuclei.
 - therefore, easily conduct electricity & heat
 - ductile (hammer into sheets)


IONIC

when a hammer is used on an ionic compound, ions repel and shatter

- strong lattice structure

METALLIC

when hit with a hammer, atoms slide past one another, just like "grease"

- alloys are a homogeneous mixture of 2 or more metals - they have a uniform composition throughout

Practice Problems

4. For each pair of elements, determine ΔEN .
(a) magnesium and chlorine (d) sodium and oxygen
(b) calcium and chlorine (e) potassium and sulfur
(c) lithium and oxygen (f) calcium and bromine
5. Draw Lewis structures to show how each pair of elements in question 4 forms bonds to achieve a stable octet.

Practice Problems

6. Show the formation of a covalent bond between two atoms of each diatomic element.
(a) iodine (c) hydrogen
(b) bromine (d) fluorine
7. Use Lewis structures to show the simplest way in which each pair of elements forms a covalent compound, according to the octet rule.
(a) hydrogen and oxygen (d) iodine and hydrogen
(b) chlorine and oxygen (e) nitrogen and hydrogen
(c) carbon and hydrogen (f) hydrogen and rubidium

Practice Problems

8. One carbon atom is bonded to two sulfur atoms. Use a Lewis structure to represent the bonds.
9. A molecule contains one hydrogen atom bonded to a carbon atom, which is bonded to a nitrogen atom. Use a Lewis structure to represent the bonds.
10. Two carbon atoms and two hydrogen atoms bond together, forming a molecule. Each atom achieves a full outer electron level. Use a Lewis structure to represent the bonds.