
SCH 4U

PART 1: TYPES of ORGANIC REACTIONS

(1) ADDITION REACTIONS -- Add atoms to a double bond or triple bond

(2) SUBSTITUTION REACTIONS -- Usually alcohols, alkyl halides, aromatic compounds

(3) ELIMINATION REACTIONS

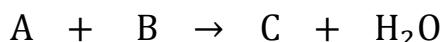
- Single bonds form double bonds
- Reactant heated in presence of a strong acid catalyst (eg. H_2SO_4)

(4) OXIDATION/REDUCTION REACTIONS

A. OXIDATION

From reactants to products, carbon has MORE bonds to oxygen & FEWER bonds to hydrogen. Reactions involve an “oxidizing agent”, represented by [O].

- **alcohol** + oxidizing agent \rightarrow aldehyde or ketone
- **aldehyde** + oxidizing agent \rightarrow carboxylic acid


B. REDUCTION – [also addition reactions OR hydrogenation reactions]

From reactants to products, carbon has FEWER bonds to oxygen & MORE bonds to hydrogen. Reactions involve a “reducing agent”, represented by [H].

- **aldehyde or ketone** + reducing agent \rightarrow alcohols
- **alkenes or alkynes** + reducing agent \rightarrow alkanes

(5) ESTERIFICATION

A. CONDENSATION

Carb. acid + alcohol \rightarrow ester + water

B. HYDROLYSIS

Ester + water \rightarrow carb. Acid + alcohol

EXAMPLES:

1. ethene combined with hydrobromic acid.

2. 1-butyne with limited bromine

3. 1-propanol with hydrochloric acid

4. 2-bromobutane and ammonia

5. benzene with nitrous acid

6. 2-propanol with sulfuric acid catalyst

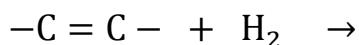
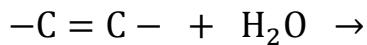
7. bromoethane with heat and a catalyst

8. 2-methyl-1-propanol + [O]

9. propyne + [H]

10. 3-nitropentanal + [O]

11. 2-methylcyclopentanone + [H]



11. ethanoic acid + 3-methyl butanol

12. tert-butyl cyclopentanoate + water

PART 2: REACTIONS OF FUNCTIONAL GROUPS

① ALKENES & ALKYNES

- **ADDITION REACTIONS** are common due to reactive double/triple bonds

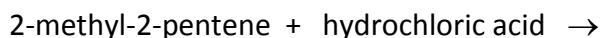
ALKENES

- **symmetrical** – identical groups on each side of double bond
- **asymmetrical** – different groups on each side of double bond
- **ADDITION SUBSTANCE** → symmetrical – eg. Cl_2 -- $[\text{Cl} - \text{Cl}]$
→ asymmetrical -- eg. H_2O -- $[\text{H} - \text{OH}]$

IF either alkene or addition substance is symmetrical → ONLY 1 product

EG 1: 2-butene + water →
(symmetrical) (asymmetrical)

EG 2: 1-butene + chlorine →


IF both reactants are asymmetrical → MORE THAN 1 product

EG: 1-butene + hydrobromic acid →

MARKOVNIKOV'S RULE:

- Major & minor products are formed.
- **MAJOR PRODUCT:** The H of the **added substance** goes to the carbon with the **greater number of H atoms**; the rest of the added substance goes to the carbon with the fewer H atoms. This is a case of "The rich get richer!"

EG: Draw and label only the major product for the reaction:

ALKYNES

- If addition substance is limited, alkyne \rightarrow alkene
- If addition substance is unlimited, alkyne \rightarrow alkane
- Follows Markovnikov's rule for asymmetrical reactants

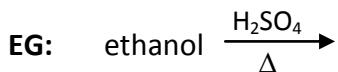
EG 1: propyne + $2 \text{ Br}_2 \rightarrow$

EG 2: 1-butyne + hydrobromic acid \rightarrow

AROMATIC COMPOUNDS

- ONLY Substitution reactions, NOT addition reactions

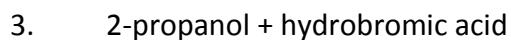
EG: benzene + bromine (with ferric bromide catalyst)


② ALCOHOLS

[A] **SUBSTITUTION REACTIONS (with HX)**

EG: ethanol with hydrochloric acid

[B] **ELIMINATION REACTIONS (forms alkenes)**


- Heated with strong acid catalyst

[C] **OXIDATION REACTIONS (forms aldehyde or ketone)**

- 1° alcohol + oxidizing agent \rightarrow aldehyde + oxidizing agent \rightarrow carb. acid
- 2° alcohol + oxidizing agent \rightarrow ketone
- 3° alcohol + oxidizing agent \rightarrow NR

EXAMPLES: Complete each reaction.

③ ALDEHYDES & KETONES

[A] OXIDATION REACTIONS -- *only aldehydes, NOT ketones*

- Aldehyde + oxidizing agent → carb acid

[B] REDUCTION REACTIONS -- *aldehydes and ketones*

- Aldehyde + reducing agent → 1° alcohol
- Ketone + reducing agent → 2° alcohol

EXAMPLES: Complete each reaction.

1. ethanal + [H]

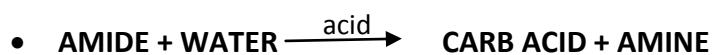
2. propanone + [O]

3. butanone + [H]

4. pentanal + [O]

(4) CARBOXYLIC ACIDS

[A] NEUTRALIZATION REACTIONS:



- CARB ACID with a BASE → SALT & WATER

[B] ESTERIFICATION REACTIONS (*special type of CONDENSATION REACTION*)

- CARB ACID WITH ALCOHOL → ESTER & WATER

⑤ ESTERS & AMIDES -- undergo hydrolysis reactions

[A] ACID HYDROLYSIS

[B] BASIC HYDROLYSIS

