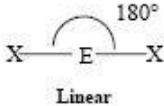
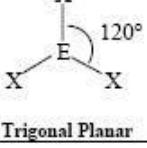
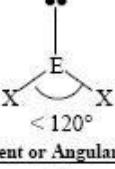
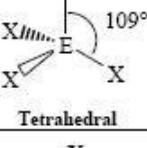
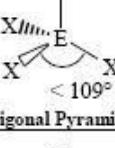
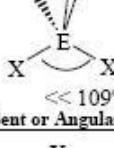
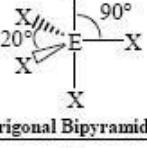
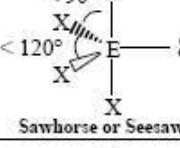
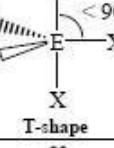
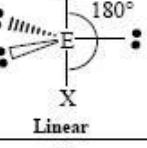
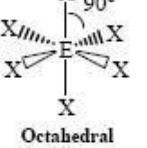
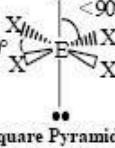
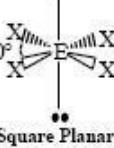
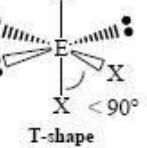
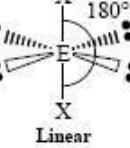


SCH 4U

MOLECULAR STRUCTURES: VSEPR THEORY

Valence-Shell Electron Pair Repulsion model (VSEPR)

It predicts the shape of the molecules and ions by assuming *the valence-shell electron-pairs are arranged as far away from one another as possible to minimize e- pair repulsions.*

Electron group repulsion determines the shape of the molecule. It does not explain chemical bonding.

AX_mE_n Notation	AX_2	AX_2E	AX_3	AX_3E
Geometry	Linear	Bent (V-shaped)	Trigonal planar	Trigonal pyramidal
	$X—A—X$ 	$X\ddot{A}\ddot{X}$ 	$X\ddot{A}\ddot{X}$ 	$X\ddot{A}\ddot{\cdots}X$
Idealized Bond Angles	180°	$<180^\circ$	120°	$<120^\circ$
AX_mE_n Notation	AX_4E_2	AX_4	AX_5	AX_6
Geometry	Square planar	Tetrahedral	Trigonal bipyramidal	Octahedral
	$X\ddot{A}\ddot{\cdots}X$ 	$X\ddot{A}\ddot{\cdots}X$ 	$X\ddot{A}\ddot{\cdots}X$ 	$X\ddot{A}\ddot{\cdots}X$
Idealized Bond Angles	90°	109.5°	$90^\circ, 120^\circ$	90°

VSEPR Geometries					
Steric No.	Basic Geometry 0 lone pair	1 lone pair	2 lone pairs	3 lone pairs	4 lone pairs
2					
3					
4					
5					
6					

DRAWING MOLECULAR STRUCTURES:

1. DRAW the Lewis structure without regard to shape
 - make sure outer atoms have appropriate # of bonds to complete octet.
 - H and F form single bonds, O forms double bond to central atom.
2. DETERMINE the valence electron count.
3. DETERMINE the number of **electron groups** around the central atom.
 - electron groups consist of **BP** (single, double, triple) and **LP**.
 - name the electronic geometry AX_n
4. DRAW the 3-D shape of the molecule.
 - if AX_5 , any LP replace atoms in equitorial positions
 - if AX_6 , any LP replace atoms in axial positions
5. NAME the subgroup molecular geometry (see chart above).
 - state the polarity and bond angles.