

MHF 4U

LINEAR INEQUALITIES

Algebraic **inequalities** replace “=” in an equation with either \leq , \geq , $<$, or $>$.

An equation such as $4x - 3 = -11$ becomes an inequality as follows: $4x - 3 > -11$.

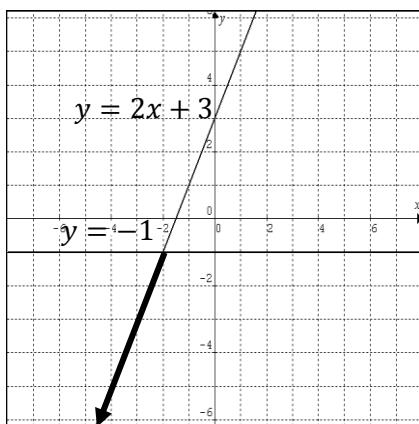
A **linear inequality** is similar to a linear equation, that is, the **degree of the inequality is 1**.

To solve a linear **inequality** using algebra is similar to solving a linear **equation** with one exception. *If, in the process of solving the inequality, division (or multiplication) by a negative number is applied, the direction of the inequality symbol must change.*

The **SOLUTION TO AN INEQUALITY** is always in terms of the **INDEPENDENT VARIABLE**.

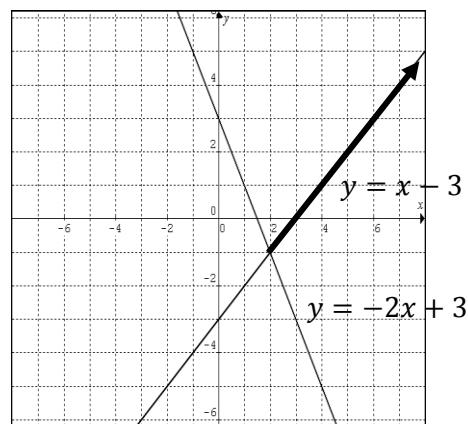
EXAMPLES:

① Solve $4x - 3 > -11$.


$$\begin{aligned}4x &> -11 + 3 \\x &> -8/4 \\x &> -2 \\x &\in (-2, \infty)\end{aligned}$$

② Solve $3(3 - n) \geq 4(n - 3)$

$$\begin{aligned}9 - 3n &\geq 4n - 12 \\-7n &\geq -21 \\n &\leq 3 \\x &\in (-\infty, 3]\end{aligned}$$


The solution set to a linear inequality can be determined by **GRAPHING**.

③ Solve $2x + 3 < -1$ by graph.

Solution: $x \in (-\infty, -2)$

④ Solve $x - 3 \geq -2x + 3$ by graph.

Solution: $x \in [2, \infty)$

NOTE: round bracket due to $<$

NOTE: square bracket due to \geq

SOLVING A DOUBLE INEQUALITY:

⑤ Solve $-4 < -2x + 6 < 2$. → Apply opposite operations to both sides of the inequality.

$$-4 - 6 < -2x < 2 - 6$$

$$-10 < -2x < -4$$

$$\frac{-10}{-2} > x > \frac{-4}{-2} → Notice symbols change direction due to division by a negative.$$

$$5 > x > 2$$

interval notation: _____

absolute value notation: _____

⑥ Solve $-2 \leq 3x + 4 \leq 22$

$$-2 - 4 \leq 3x \leq 22 - 4$$

$$-6 \leq 3x \leq 18$$

$$-2 \leq x \leq 6$$

interval notation: _____

absolute value notation: _____